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ABSTRACT

In this paper, we address the problem of sparse signal recov-
ery from scalar quantized compressed sensing measurements,
via optimization. To compensate for compression losses due
to dimensionality reduction and quantization, we consider a
cost function that is more sparsity-inducing than the com-
monly used ¢;-norm. Besides, we enforce a quantization con-
sistency constraint that naturally handles the saturation is-
sue. We investigate the potential of the recent Graduated-
Non-Convexity based reweighted ¢;-norm minimization for
sparse recovery over polyhedral sets. We demonstrate by sim-
ulations, the robustness of the proposed approach towards sat-
uration and its significant performance gain, in terms of re-
construction accuracy and support recovery capability.

Index Terms— Quantized Compressed Sensing, Con-
cave Approximation, Graduated-Non-Convexity, Reweighted
{1, Support Recovery

1. INTRODUCTION AND RELATED WORKS

Recovery of the sparsest signal representation from an under-
determined system of linear equations, which arises in Com-
pressed Sensing (CS) theory, is a well-studied problem for
which convex relaxation by ¢;-norm minimization provides
(1) an exact solution via Basis Pursuit (BP), provided the
sparsest solution is unique, and (2) a stable solution via Basis
Pursuit De-Noising (BPDN), whenever the measurements are
corrupted by noise of bounded energy [1].

When addressing the practical situation of quantized mea-
surements, the saturation phenomenon introduces large and
potentially unbounded errors, and the stability property of
BPDN does no longer hold. Besides, the convexification ap-
proach via the ¢;-norm leads to a significantly bad approx-
imation of the ¢y counting ‘“norm”. However, in the liter-
ature on Quantized Compressed Sensing (QCS), optimiza-
tion based reconstruction is commonly addressed from an /4 -
minimization perspective [2]-[7].
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Fortunately, the literature on CS provides more sparsity-
inducing alternatives to the ¢;-norm cost function, enjoying
nice properties (differentiability, concavity, etc) and amenable
to use tractable reconstruction algorithms. For instance, the
Maximally Sparse Convex (MSC) approach in [8], deals
with sparsity-penalized least squares using a non-convex
sparsity-inducing regularizer that ensures the convexity of the
total cost function. The Iterative-Reweighted-Least-Squares
method (IRLS) presented in [9] is nothing but a Majorization-
Minimization (MM) scheme that employs a logarithmic ap-
proximation of the “{y-norm” upper-bounded by a quadratic
surrogate function. The reweighted-¢; minimization of [10],
is also a MM procedure using an e-regularized logarithmic
approximation and a linear surrogate function. In [11], the
author proposes an exponential concave approximation that
more closely approximate the ¢y-norm and uses a linear sur-
rogate function, yielding another reweighted-¢; scheme.

Recently, a Graduated-Non-Convexity (GNC) approach
[12], also known as continuation approach, which is an iter-
ative optimization scheme involving a family of approxima-
tion functions with gradual approximation accuracy / smooth-
ness trade-off, has been proposed to solve the sparse recovery
problem [13, 14, 15]. The GNC methodology has the merit of
converging to a local solution of the /y-norm itself. In [14], a
class of differentiable approximation functions, amenable to
use a gradient projection procedure at each iteration, is pro-
posed. More recently, the concave approximation of [11] has
been integrated into a GNC-based procedure in [13, 15], to
solve the sparse recovery problem under a linear constraint
and over a polyhedral set, respectively.

In this paper, we address the problem of sparse recovery
from scalar quantized and possibly saturated CS measure-
ments, under a Quantization Consistency (QC) constraint,
by considering the GNC-based reweighted ¢; minimization
approach of [13, 15]. The contribution of this paper is three-
fold. First, the proposed method is essentially a reweighted
¢1-minimization technique, thus computationally attractive,
and more sparsity-inducing than the commonly used ¢;-
minimization in QCS. Second, the QC constraint yields a
built-in capability to handle the saturation phenomenon, in
the same way of [3, 7]. Third, as the proposed algorithm is
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essentially minimizing the ¢y-norm, even though the sparsest
solution is not unique, we study the uniqueness of its support,
via simulations. The reason behind this motivation is that the
feasible solution space defined by the QC constraint is not an
arbitrary polyhedron. It should be noted that the problem of
support recovery from QCS measurements has been mostly
addressed in the case of one-bit CS [16, 17], under additional
constraints on the design of the measurement matrix. In [16],
the case where the measurements are corrupted by Gaussian
noise and outliers is also considered. For the case of multi-
bit QCS, the authors in [18] derived lower bounds on the
required number of measurements for exact support recov-
ery from scalar quantized and noisy measurements using a
Maximum-Likelihood decoder. In [19], support recovery for
3 A-QCS is addressed using an £; minimization approach.

The paper is organized as follows. Section II presents the
observation model and the optimization problem to be consid-
ered throughout the paper. Section III describes the algorith-
mic framework to solve the proposed optimization problem.
Section IV provides simulations results that demonstrate the
significant performance gain of the proposed approach, both
in terms of quality of the estimation and support recovery ca-
pabilities. Finally, Section V concludes the paper.

2. OBSERVATION MODEL AND PROBLEM
FORMULATION

2.1. QCS Observation Model

In this paper, we assume that CS measurements are scalar
quantized, yielding the observation model

z = Px,

y = Q(2), (D

where x € RY is a K-sparse signal, ® € RM*V is the mea-

surement matrix with M < N, and Q(-) is the quantization
function that maps real-valued vectors, element-wise, to a set
of 2% output levels {q;,i = 1,...,2%}, according to a set of
thresholds {7, = 1,...,2"~1}, with b denoting the quan-
tizer precision in terms of bit-depth. Formally, we have

q1 if Zm < T1,
Ym =4 G if 2y €Mo1,7), i=2,...,207L,
(ob if zp, > Tob—1.

2
We will consider a uniform midrise quantizer i.e. the thresh-
olds are equally spaced with step size §, and the levels are cen-
tered between the thresholds. The dynamic range of the quan-
tizer is [—g, g] where g £ 2b71§ is the saturation level. Mga—

surements of magnitude larger than g—¢ saturate at (g — 5).

2.2. Concave Approximation of the /;-norm

The continuous ¢, approximation function, adopted in this pa-
per, was originally proposed in [11]. By introducing a non-
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Fig. 1: ¢, approximations. For f,(-),c = 0.1,0.2,0.5, 1.
negative parameter o, we define:
N N
Fox) =3 fola) =S (1= ") 3)
i=1 i=1
The above approximation enjoys the following properties:
o Fo(x) < [xllo,

lim F,(x) = ,
o lim Fo(0) =[xl

o F,(x)=F,(—x),
e [, is non-decreasing and concave in the positive orthant.
As shown in Fig 1, this function better approximates the £,-

norm and is likely to be more sparsity-inducing than the com-
monly used ¢ -norm.

2.3. Optimization Problems Formulation

We propose to find a sparsest consistent solution by consider-
ing the QC-constrained optimization problem:

gﬁg}vHxHO st Qp(Px) =y, 4)

denoted /(-QC. As we are dealing with a scalar quantization
scheme, the QC constraint is obviously a linear inequality
constraint. To be precise, let @, and ®_ denote row sub-
matrices of ®, corresponding to the positively saturated and
the negatively saturated measurements, respectively and let
®,, be its row submatrix corresponding to the remaining mea-
surements. Then, it can be easily verified that the QC con-
straint is equivalent to the following linear inequality:

Q(®x)=y & Px<y, (5)

where & = [®7, —®T, T ®T|T ¢ REM-5XN yijth §
being the number of saturated measurements, and y is the
vector of thresholds with respect to the measurements.

Then, the £,-QC problem in (4) could be written as:

min ||x[lp st ®x <y, (6)
x€ERN

where the problem at hand is to recover a sparsest solution
over a polyhedral set.

By considering the approximation function F, the £3-QC
problem could be approximated by :

in F, t. ®x<y, 7
min Fo(jx[) s x<y (7
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3. GRADUATED-NON-CONVEXITY BASED
REWEIGHTED ¢; MINIMIZATION FOR QCS

3.1. QCS by Reweighted ¢/; Minimization

In order to take advantage of the concavity of F}; in the pos-
itive orthant, we introduce the variable conversion suggested
in [15], u = [x*,x7] € R?V, where x* = max(x,0) and
X~ = —min(x, 0). Then, it can be verified that the approxi-
mate problem (7) can be equivalently formulated as:

min F,(u) s.t.
uE]R2N

ucP, ¢))

where the objective function is concave and bounded from
below over the feasible solution set

P={ucR?® [® -®lu<y, ux>0}

A common way to solve a concave optimization problem,
is to apply a Majorize-Minimize (MM) iterative procedure
where the surrogate function is constructed from the lineariza-
tion of the objective function around the current iterate. More
precisely, to solve (8), we proceed iteratively by majorizing
F,(u) by (VF,(u*),u—u*), based on its concavity. Hence
solving (8) amounts to iteratively solve the linear program:

u"t! = argmin(VF, (u"),u) s.t.
ueR2N

ueP. 9

Problem (9) could be cast into the following reweighted ¢;-
norm minimization:

M = argmin |Wx||;  s.t.

xERN

dx<y, (10)
where W = diag(VF, (|x*)).

3.2. QCS by GNC-based Optimization

Solving the £3-QC problem by considering a single approxi-
mation function F} is not very judicious. Indeed, the choice
of o would either favor approximation accuracy at the price
of extra local minima or vice versa.

3.2.1. GNC General Framework

Graduated-Non-Convexity is a deterministic global optimiza-
tion methodology that addresses non-convex cost functions
by considering a family of approximation functions scaled
by a parameter o that monotonically controls the tradeoff
between approximation accuracy and smoothness. When
o grows towards oo, the family should embed a convex
approximation function. Then, as o decreases, it leads con-
tinuously to the original cost function with an increasing
“non-convexity” rate i.e. an increasing number of local min-
ima. The motivation behind such a construction is essentially
to avoid these annoying local minima by: (1) gradually de-
creasing the scale parameter so that the global minimizers of
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two consecutive problems are sufficiently close, more pre-
cisely, the former should fall within the locally convex region
around the latter, the so-called basin of attraction, and (2)
each approximation problem is initialized with the minimizer
of the previous one, so that a descent method would converge
to one of its global minimizer. Clearly, the initialization issue
and the decreasing rule for o are crucial for the effectiveness
of such an optimization methodology.

3.2.2. GNC-based scheme for £y-QC

F, minimization is equivalent to the convex ¢;-minimization
for o sufficiently large and to the ¢p-minimization for o suf-
ficiently small [13]. Then, ¢y-QC could be solved using a
GNC-based procedure involving the family of approximation
functions F,,. Moreover, a solution of /1-QC is potentially a
good starting point. The decreasing rule for ¢ is inspired from
the exposition suggested in [13], with respect to the behaviour
of the function f,,. To be more precise,

1, if z>o0,
f"("”)—{o, if z<o.

Let x? be the current iterate, i.e a solution of F,,;—1 minimiza-
tion, and let I = {i | |27| < ¢771}. It is reasonable to take
I as an estimation of the zero components of x7. To ensure a
gradual decrease of o, yielding a small number of GNC iter-
ations, we propose the following adaptive update rule:

(1)

o7 = mean(x;) + std(x;), (12)

where std denotes the standard deviation, so as to ask whether
the most significant components of x; are really zero com-
ponents. The QCS reconstruction scheme, involving a GNC-
based outer loop and a reweighted /; minimization inner loop,
is summarized in Algorithm 1.

Algorithm 1 GNC-based Reweighted ¢; for QCS

Require: ®,y, ¢1, €2, 0°, Omin.

1: compute ® according to (5).
0

2: x° = argmin, cpn [[x[|1 s.t. Bx < ¥

3 5=0.

4: while d; > €1 and 67 > opmin do > GNC outer loop
55 j=j+1,k=0,%X"=xI.

6: while d> > €2 do > reweighted ¢; inner loop
7: k=k+1.

8: W = diag(VF, ;-1 (|K"71))).

9: X" = argmingcpn [Wx||1 st. ®x<y.

10; da = [|%F — 51| /%5

11: end while

12: I =%Fdy = ||x7 — 7Y/

13: I={i|l|z]| <o}, 09 = mean(xs) + std(xr).
14: end while
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Fig. 2: Average RSNR versus the saturation level g, with K =
10, M = 250, N = 500 and b = 4.
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Fig. 3: Reconstruction performance versus the bit-depth b,
with K = 10, M = 250 and N = 500.

4. SIMULATION RESULTS

In this section, we demonstrate the performance gain of the
proposed ¢y-QC recovery approach over two benchmark ¢,
recovery approaches that handle saturation errors. More pre-
cisely, we consider the /1-QC method [3] and the Satura-
tion Consistency (SC) method, denoted here ¢1-¢5/SC, [6].
The ¢1-¢5 /SC method decouples the measurements and uses a
SC constraint on the saturated measurements and an ¢5-norm
constraint over the remaining ones.

All the methods were implemented using the general-
purpose convex optimization package CVX [20], which is an
interior-point method solver. For each trial, a new M x N
measurement matrix ® is randomly generated with its entries

drawn from a zero-mean, ﬁ-variance Gaussian distribution
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N(0, %) For each realization of the K-sparse signal x, the
support is selected uniformly at random from all possible
supports of cardinality K, the non-zero entries are drawn
independently from A/(0, 1), and x is scaled to unit £5-norm.
For the sake of comparison, we consider the e-support of the
reconstructed signal X, defined as e-supp(X) = {i | |z;| > €}
where € is a small value used to prune out negligible non-
zeros, and we consider the following performance metrics:

e The Reconstruction Signal-to-Noise-Ratio RSNR £

—201og;,(|lx—X]|2), where X is the reconstructed signal;

e The number of False Non-Zeros (FNZ) and the number
of False Zeros (FZ);

e The probability of successful support recovery i.e. the
probability of the event SE = 0, where SE £ FZ + FNZ
stands for Support Error.

For all experiments, we set € = 1077, ¢ = 1074, e =
1073, 6 = 2max(|x|) and 0., = 10~7. We use an or-
acle bound for the ¢5-norm constraint within the ¢;-¢2/SC
method, namely ||y — z7||2, where T is the support of non-
saturated measurements i.e. 7 = {4, ;| < g — $}.

In the first experiment, we set K = 10, M = 250, N =
500, b = 4 and we tune the saturation rate by varying the
saturation level g over the range |0, 0.4]. For the proposed
£y-QC approach, the maximal inner iterations number is set
to 10, in order to tradeoff computational complexity at sub-
optimal saturation rates. Figure 2 depicts the RSNR perfor-
mance and the saturation rate, indicated on the left vertical
axis and the right vertical axis, respectively. Results are av-
eraged over 100 trials. As shown, all the methods reach their
optimal performances at non-zero saturation rates. The pro-
posed approach provides a substantial reconstruction perfor-
mance gain (15 dB) with a higher saturation rate at its optimal
operating point.

In the second experiment, we examine the impact of the
bit-depth on the reconstruction performance. Figure 3 reports
the average performance over 500 trials, at the optimal sat-
uration rate for each method, in terms of (a) RSNR and (b)
the number of FNZ. For the proposed ¢(-QC method, we also
depicts (c) the successful support recovery rate and (d) the
histograms of support sizes (sparsity levels) of the recovered
signals. As expected, the proposed approach shows an inter-
esting support recovery capability. Indeed, the search space
induced by the QC constraint is a N-dimensional polyhedron
included within the intersection of many slabs (a slab is the
region between two parallel hyperplanes) defined by the un-
saturated measurements. For a given bit-depth, a high satura-
tion rate induces a small step size ¢, and consequently thin-
ner slabs are involved in the definition of the polyhedral solu-
tion set. Thus, even though the polyhedron is unbounded, it
is likely to intersect a single K -dimensional subspace, given
a small 0. Of course, the step size § could not be arbitrary
small to ensure a sufficient number of unsaturated measure-
ments and equivalently a sufficient number of slabs. As illus-
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trated in Figure 3d, the proposed approach provide a quasi-
sparsest consistent solution of support size K (x is a solu-
tion of £y-QC) with an increasing probability with the bit-
precision. Support sizes slightly greater than K (11, 12) re-
flect local minima caused by sub-optimal o-initialization and
update rule, and stopping rules. Support sizes less than K
(7 —9) are rather related to very small non-zero components
in x, with comparaison to 4. It is also to be mentioned that
the proposed method requires around 3.2 GNC iterations on
average, for all bit-depth settings.

5. CONCLUSION

We presented an efficient method to recover a sparse signal
from scalar QCS measurements, by considering the set of
sparsest consistent solutions. A quasi-sparsest solution was
estimated using an iterative GNC-based reweighted ¢; mini-
mization approach that consider a concave approximation of
the /p-norm, with an increasing accuracy. We demonstrated
the performance gain of the proposed approach, with compar-
ison to two benchmark ¢; minimization based QCS sparse re-
covery methods, both in terms of reconstruction accuracy and
probability of successful support recovery, via simulations.
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