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Abstract—In this paper, a multi-channel multi-dimensional ap-
proach is investigated for modeling of signals obtained from DNA
gel electrophoresis. Related applications include DNA fingerprint-
ing and crime scene investigations. In order to improve resolution
and accuracy of modeling, a novel approach is employed based
on using equidistant multi-capture data frames obtained over an
extended span of time. The multidimensional signal is rescaled
and aligned which improves resolution, then the signal is modeled
as a surface that varies with both the time index and separation
size. The overall approach is tested on a number of datasets. The
simulation results show that the proposed approach can be used
as a starting multi-dimensional time series model for raw signals
obtained from gel electrophoresis.

I. INTRODUCTION

Deoxyribonucleic acid (DNA) is a molecule that carries
the genetic information and instructions in living beings.
There are various tools and signal processing approaches that
are used for analyzing biological molecules. One powerful
tool in particular is Electrophoresis [1], which is applied for
separating macromolecules based on their size, for purposes
of identification, quantification or purification. The process
of electrophoresis involves subjecting the DNA molecules
to an electric field through a medium, e.g., a special gel,
which makes the molecules move and separate based on their
charge and size. The study of signals obtained from DNA
gel electrophoresis are of significant importance, especially
given that the majority of the existing literature focuses on
the process of determining the sequence of chemical bases in
a particular DNA molecule, rather than time series analysis
of the captured signals from electrophoresis and/or statistical
signal processing of those signals.

It is a well-known fact that inside a solution, a DNA
molecule demonstrates the behavior and the characteristics of
a Brownian particle [2]. In addition, the entire procedure of
gel electrophoresis can be studied as a macrotransport process
[3]. In fact, macrotransport processes are applicable to various
cases and phenomena that arise in physiochemical systems.
However, some of the involved parameters, or captured signals,
may exhibit a stochastic nature and therefore can be studied
using statistical signal processing approaches or time series
analysis tools.

Fig. 1. Multiple Snapshots illustrating separation of DNA fragments

We would like to emphasize the point that in this paper,
we aim to link statistical signal processing and analysis
approaches to model the captured signals that result from
gel electrophoresis. That is to say that we are not consid-
ering a genomic signal processing approach [4], i.e., we are
not necessarily seeking the biological translation of captured
data. Instead, we study the characteristics of the considered
phenomena as a time series. Specifically, we aim to find a
model that describes the resultant signal and its characteristics
using a multidimensional approach. This is achieved by explor-
ing the stochastic nature of signals captured from DNA gel
electrophoresis, where the DNA molecules take a stochastic
trajectory when separating during electrophoresis.

Basecalling is defined as the extraction or decoding of the
DNA sequence from the processed time series. The available
literature usually targets signal processing approaches for
DNA sequencing and basecalling, but not the time series
modeling of the obtained signal from electrophoresis. In [5],
the analysis of the information content of linear biomolecules,
such as DNA and proteins, is investigated via digital signal
processing approaches. The study in [6] uses the wavelet
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transform in DNA sequence analysis and on cellular neural
networks in microarray image analysis, which can have a
potentially large effect on the real-time realization of DNA
analysis. The study also summarizes possible research ap-
proaches including a signal processing technique for genomic
feature extraction and hybrid multidimensional approaches
to process the dynamic genomic information in real time.
Furthermore, in [7], the authors considered the computation
of linear transforms of symbolic signals. The investigated
techniques are illustrated by considering spectral and wavelet
analyses of DNA sequences. Also, the study in [8] considered
the recovery of signals in compressed DNA microarrays using
sparse measurement matrices. Finally, in [9], a new algorithm
for examining periodic patterns in DNA sequences is devel-
oped, using the short-time periodicity transform. Regarding
mathematical modeling for DNA processing, some studies
exist, e.g., [10]. Image processing-based approaches exist
such as [11]–[13], but are mostly related to DNA microarray
images.

In this paper we propose for the first time an approach
for multi-channel multi-dimensional modeling of raw signals
from DNA gel electrophoresis. The signal is passed through
several processing stages that increases the resolution. First the
peaks of the signal are detected, then the frames are scaled and
realigned, and finally the multi-dimensional signal is fitted to
a proposed theoretical model. The datasets used for testing
our approach are based on a new novel multi-snapshot imag-
ing approach [14], which provides higher resolution. Fig.1
illustrates an example of a multi-snapshot captured image,
which demonstrates the progression of separation of the DNA
fragments as time goes on.

The rest of this paper is organized as follows. Section
II describes the preliminary background of the investigated
problem. In section III, the signal modeling approach is
explained. In section IV, simulation results are presented and
finally section V concludes the paper.

II. PROBLEM FORMULATION

In this section, preliminary information is provided and the
investigated problem is introduced and formulated.

A. Mathematical Notations

The following notations will be used throughout the pa-
per. Vectors and matrices will be denoted by lowercase and
uppercase boldface characters, respectively. The notation (̂·)
indicates an estimated parameter, whereas ( · ) indicates the
statistical mean. Other mathematical operators include (·)⊤
which is the transpose, ∥ · ∥p is the matrix p-norm, ⊗ is the
Kronecker product, 1a is the a×1 ones vector and finally the
notation I(·) is the indicator function.

B. Problem Setup

Let ND be the size of the DNA population that will be
introduced at the start of the experiment, i.e., at t = t0,
where t = 0, . . . , N − 1. It is assumed that the stochastic
trajectory of each DNA molecule can be described in terms

of the cylindrical coordinates, where each point is described
by the tuple r = {r, ϕ, z}, where

r =
{
r, ϕ, z

∣∣0 ≤ r ≤ rmax, 0 ≤ ϕ ≤ 2π,−∞ ≤ z ≤ ∞
}
. (1)

We are mainly interested in the average area concentration
field of the DNA solute, which can be interpreted as a
time series signal. Let F be the concentration of the DNA
population in molecules per unit volume. Using the cylindrical
coordinates, the initial concentration field at time t0 is denoted
by

F0 (r0, ϕ0, z0) = F (r0, ϕ0, z0, t = 0) , (2)

where the starting coordinate point is r0 = {r0, ϕ0, z0} at time
t0. The initial population size is governed by

ND =

∞∫
−∞

2π∫
0

rmax∫
0

F0 (r0, ϕ0, z0, t0) r0dr0 dϕ0 dz0. (3)

Furthermore, the concentration at time t = 0 is a function of
the transition probability, i.e.,

F (r, ϕ, z, t) =

∫∫∫
Pr

(
r, ϕ, z, t

∣∣r0, ϕ0, z0, t = 0
)

×F0 (r0, ϕ0, z0, t0) r0dr0 dϕ0 dz0, (4)

where Pr
(
r, ϕ, z, t

∣∣r0, ϕ0, z0, t0
)

is the transition probability
into a new state described by the coordinates r = {r, ϕ, z}
and time t and satisfying

∞∫
−∞

2π∫
0

rmax∫
0

Pr
(
r, ϕ, z, t

∣∣r0, ϕ0, z0, t0

)
× rdr dϕ dz = I(t ≥ 0) (5)

It ia assumed that the concentration F should satisfy the
following conditions [3]:

F→ 0, at |z| → ∞, (6a)
F→ F0, at t = 0, (6b)

∂F
∂r

= 0, at r = R, (6c)

F (ϕ+ 2π)= F(ϕ). (6d)

The first condition stated by (6a), implies that the concentra-
tion field vanishes at large distances along the direction of
movement. The second condition implies that the concentra-
tion is equivalent to the initial value at t = t0. The condition
in (6c) indicates that the rate of change of the concentration at
the maxim value of the r axis is zero. Finally, the condition in
(6d) states that the concentration is cyclic as a function of the
ϕ axis. Furthermore, the concentration field should satisfy the
convective-diffusion partial differential equation [3], which is
written as

∂C
∂t

+ v
∂C
∂z

= ω

{
1

r

∂

∂r

(
r
∂C
∂r

)
+

1

r2
∂2C
∂ϕ2

+
∂2C
∂z2

}
, (7)

where v and ω denote the components of the mean velocity
vector and the dispersion tensor in the direction of motion,
i.e., along the z axis. Thus, the previous equation describes
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what happens to the concentration F at long times. Solving
the previous equation based on the initial conditions stated
by equations (3) and (6) yields a weighted version of the
traditional solution

F(t, y) =
1√
4πωt

exp

[
− (y − vt)

2

4ωt

]
. (8)

III. SIGNAL MODELING

A. Organization of the Captured Signal
Let NF denote the number of captured frames within the

time window, and let M denote the number of separation
indexes. Let us assume that the results from gel electrophoresis
of a specific DNA fragment are organized into the matrix
Z ∈ RM×NF , where

Z =
{
zm,t|m = 1, . . . ,M, t = 0, . . . , NF − 1

}
, (9)

where m and t represent the separation and time indexes
respectively. The matrix Z can also be defined as a group
of NF objects in an M -dimensional space. Let us define
zt ∈ RM×1, where zt = {zm,t}Mm=1, be the column vector
of the obtained signal values at the t-th time instant. Hence,
we can rewrite (9) on the form:

Z =
[
z0 z1 . . . zNF−1

]
. (10)

Let us assume that the signal is passed through the following
steps: (1) identification of peak values and their corresponding
locations in the time-separation grid; (2) alignment of captured
frames to a chosen frame; and (3) applying curve fitting using
non-linear least squares to estimate a multidimensional model.
Let us assume that the aligned matrix is described by the set of
shift and scale gain parameters for each frame. Let us define
the aligned matrix Z̆ as

Z̆ = ZΞ+ 1M ⊗ β (11)

where Ξ ∈ RNF×NF and β ∈ RNF×1 denote a diagonal
scaling matrix and the offset row vector respectively, which
are defined by

Ξ =


ξ1 0 . . . 0
0 ξ2 . . . 0
...

. . .
...

0 0 . . . ξNF

 , (12)

and
β =

[
β1 β2 . . . βNF ,

]
(13)

respectively. Let ρ denote the set of peaks that is associated
with the t-th frame zt, where t = 0, . . . , NF − 1. Each list of
peaks is defined as a set containing ordered pairs, such that
the signal value can be characterized by the set of sets having
the form

P =
{
{ρ1}, . . . , {ρNF}

}
(14)

where ρi denotes the i-th peaks list, which is defined as

ρi =
{(

i,m, z̆(m,t=i)

)
k

∣∣k = 1, . . . ,Ki,

Ki < M, z̆ ∈
{
z̆(m,t=i)

}M

m=1
,
}
, i = 1, . . . , NF, (15)
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(a) Multichannel signal (raw signal)
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(b) Contour view

Fig. 2. Sample datset obatined from DNA gel electrophoresis

where Ki is the number of peaks per frame. Henceforth, the
entire alignment problem is to compress (or decompress) each
frame, based on a chosen reference frame, and to find the
values of scaling gain matrix Ξ and the shifting gain vector
β.

B. Multidimensional Model

In this part, we consider a theoretical model of the process
{zm,t|m = 1, . . . ,M ; t = 0, . . . , NF−1} as a two dimensional
process denoted by

ẑ = f(x, y) = F(x = t, y) (16)

Hence, we seek a theoretically estimated matrix Ẑ that is
equivalent to the aligned data matrix Z̆. First, let us assume
that each element of Ẑ is governed by the relationship:

ẑ =

Kavg∑
i=1

α̂i(x)√
4πω̂i(x)

exp

−
(
y − v̂i(x)

)2

4ω̂i(x)

 , (17)
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(a) Result of scaling and realignment
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(b) Contour view showing impact of scaling and realignment

Fig. 3. Signal after scaling and realignment based on (11)

where in this case the parameters ω̂ and v̂ are both functions
of x, i.e., varying with time. The values of the estimated
parameters can be obatined using a non-linear least squares
formulation. This can be visualized as finding the optimal
vector or parameters that satisfies

θ̃ = argmin
θ

∥∥∥Z̆(θ)− Ẑ(θ)
∥∥∥2 ,

subject to θ̃ ∈ R3Kavg×1
+ (18)

where θ̃ is the optimal set of parameters which is defined as

θ = vec(α,ω,v), (19)

where α, ω and v are all in RKavg×1, and defined as

α=
[
α1 . . . αKavg

]⊤
, (20)

ω=
[
ω1 . . . ωKavg

]⊤
, (21)

v=
[
v1 . . . vKavg

]⊤
. (22)
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(a) Fitted signal
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(b) Contour view of surface

Fig. 4. Synthetic Surface in (a)3D, (b) contour view. Fitting was perrfomed
based on (18)

IV. SIMULATION RESULTS AND DISCUSSION

In this section, examples from the simulation results are
presented and discussed. In fact, the proposed approach is
tested on several datasets. However, for brevity and due to
limited space, only results for a single dataset are highlighted.
The example dataset is depicted in Fig.2. The dataset was
first obtained using a multi-capture imaging method, such that
the signal is obtained as a surface that varies with both time
index and separation size. The multiple time series captures
are illustrated in Fig.2-(a) which shows the signal values
variation across time and separation. In fact, using a multi-
capture approach provides a higher resolution when compared
with the conventional methods, namely the finish-line method
and the single-snapshot imaging approach. On the other hand,
Fig.2-(b) depicts a contour plot, which provides a top view
that demonstrates the behavior of peaks as a function of both
the time index and separation.

The results of the rescaling and realignment step are shown
in Fig.3, where Fig.3-(a) illustrates the resultant surface and
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Fig. 5. Initial number of estimated average peak locations
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Fig. 6. Theoretical fitting of the starting frame based on the initial peaks
locations

Fig.3-(b) provides a contour view. Both parts of the figure
depicts the signal value as a function of both time index and
separation size. In fact, rescaling and realignment of signal
peaks provides higher resolution, but at an expense of missing
information for specific coordinates of time and separation.
The missing areas are indicated by the blank white region in
figures (a) and (b) of Fig.3. The aligned matrix Z̆ was obtained
by finding the associated parameters defined in (11).

Finally, the fitting results are shown in Fig.4. Fig.4-(a)
depicts the estimated surface obtained by solving the opti-
mization problem of (18). Fig.4-(b) compares between the
contour views of the original surface and the fitted surface.
Future work to improve the accuracy of the procedure includes
using advanced algorithms for baseline and background noise
estimation.

For fitting, a list of average peak locations are calculated
based on the results obtained from determining the multiset in
(14). In the employed example dataset, the average number of
peaks was found to be 11, with one false peak. Fig.5 illustrates
the estimated average frame and the average peak locations.
The set of initial peaks locations, was used to generate initial
values for the optimization problem described by (18). Fig.6,
depicts an example for the initial frame, showing the original
signal as a function of separation, the fitted frame and the
corresponding residual.

V. CONCLUSIONS

In this paper, we investigated a multi-channel multidimen-
sional model for signals extracted from DNA gel electrophore-
sis. The proposed approach is based on using multi-capture
imaging, which provides more information than using single-
snapshot imaging or the finish-line method. Therefore, the ob-
tained datasets provide high resolution which enables further
signal processing for purposes of multidimensional time series
analysis of the obtained signal. The multidimensional signal
was aligned in order to increase resolution, then the resultant

surface was fitted using an estimated list of average peak
locations that were used to infer initial values for the multidi-
mensional fit. The obtained simulation results has shown that
the employed approach is successful for obtaining a synthetic
form of the original dataset. Therefore, this method can be
used as a start for future work, to produce enhanced versions
using advanced signal processing techniques, e.g., accurate
estimation of peak locations, distinguishing and omitting false
peaks and robust models and reduction of background noise.

ACKNOWLEDGMENT

This work was supported by the Engineering and Physical
Sciences Research Council (EPSRC) [EP/J015180/1].

J. R. Hopgood is funded by the Royal Academy of Engi-
neering (RAE).

REFERENCES

[1] V. G. Babskii, M. Y. Zhukov, and V. Yudovich, Mathematical theory of
electrophoresis. Springer Science & Business Media, 2012.

[2] T. Schlick, Molecular Modeling and Simulation: An Interdisciplinary
Guide. Springer Science & Business Media, 2013.

[3] H. Brenner, “Macrotransport processes,” Langmuir, vol. 6, no. 12, pp.
1715–1724, 1990.

[4] E. R. Dougherty, A. Datta, and C. Sima, “Research issues in genomic
signal processing,” IEEE Signal Processing Magazine,, vol. 22, no. 6,
pp. 46–68, 2005.

[5] V. Veljkovic, I. Cosic, D. Lalovic et al., “Is it possible to analyze dna and
protein sequences by the methods of digital signal processing?” IEEE
Transactions on Biomedical Engineering,, no. 5, pp. 337–341, 1985.

[6] X.-Y. Zhang, F. Chen, Y.-T. Zhang, S. C. Agner, M. Akay, Z.-H. Lu,
M. M. Y. Waye, and S. K.-W. Tsui, “Signal processing techniques in
genomic engineering,” Proceedings of the IEEE, vol. 90, no. 12, pp.
1822–1833, 2002.

[7] W. Wang and D. H. Johnson, “Computing linear transforms of symbolic
signals,” IEEE Transactions on Signal Processing,, vol. 50, no. 3, pp.
628–634, 2002.

[8] F. Parvaresh, H. Vikalo, S. Misra, and B. Hassibi, “Recovering sparse
signals using sparse measurement matrices in compressed DNA microar-
rays,” SIEEE Journal of selected Topics in Signal Processing,, vol. 2,
no. 3, pp. 275–285, 2008.

[9] M. Buchner and S. Janjarasjitt, “Detection and visualization of tandem
repeats in dna sequences,” IEEE Transactions on Signal Processing,,
vol. 51, no. 9, pp. 2280–2287, Sept 2003.

[10] N. Chakravarthy, A. Spanias, L. D. Iasemidis, and K. Tsakalis, “Autore-
gressive modeling and feature analysis of dna sequences,” EURASIP
Journal on Applied Signal Processing, vol. 2004, pp. 13–28, 2004.

[11] R. Lukac, K. N. Plataniotis, B. Smolka, and A. N. Venetsanopoulos,
“A multichannel order-statistic technique for cdna microarray image
processing,” IEEE Transactions on NanoBioscience,, vol. 3, no. 4, pp.
272–285, 2004.

[12] E. Athanasiadis, D. Cavouras, P. P. Spyridonos, D. T. Glotsos, I. K.
Kalatzis, G. C. Nikiforidis et al., “Complementary dna microarray
image processing based on the fuzzy gaussian mixture model,” IEEE
Transactions on Information Technology in Biomedicine,, vol. 13, no. 4,
pp. 419–425, 2009.

[13] S. Samavi, S. Shirani, and N. Karimi, “Real-time processing and
compression of dna microarray images,” IEEE Transactions on Image
Processing,, vol. 15, no. 3, pp. 754–766, 2006.

[14] J. R. Hopgood, “Improved resolution of chromatographic peak analysis
using multi-snapshot imaging,” in IEEE 24th European Signal Process-
ing Conference (EUSIPCO), in press,, Budapest, Hungary, 2016.

2016 24th European Signal Processing Conference (EUSIPCO)

686


