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Abstract—Kernel adaptive filters (KAFs) are powerful tools 

for online nonlinear system modeling, which are direct extensions 

of traditional linear adaptive filters in kernel space, with growing 

linear-in-the-parameters (LIP) structure. However, like most 

other nonlinear adaptive filters, the KAFs are "black box" 

models where no prior information about the unknown nonlinear 

system is utilized. If some prior information is available, the 

"grey box" models may achieve improved performance. In this 

work, we consider the kernel adaptive filtering with prior 

information in terms of equality function constraints. A novel 

Mercer kernel, called the constrained Mercer kernel (CMK), is 

proposed. With this new kernel, we develop the kernel least mean 

square subject to equality function constraints (KLMS-EFC), 

which can satisfy the constraints perfectly while achieving 

significant performance improvement. 

Keywords—Kernel adaptive filtering; kernel least mean square; 

equality function constraints; 

I. INTRODUCTION  

Nonlinear system modeling finds a wide range of 
applications in many real-world problems and is still an active 
area of research. There are various nonlinear adaptive filters 
that can be used for nonlinear system modeling, among which 
the kernel adaptive filters (KAFs) [1] are very attractive 
because of their desirable features such as convexity, universal 
approximation, and online learning manner. The KAFs are 
developed by implementing the well-established linear 
adaptive filters in kernel space, building a growing linear-in-
the-parameters (LIP) nonlinear model in the original input 
space. They also belong to a class of learning machines called 
convex universal learning machines (CULMs) [2]. So far 
many kernel adaptive filtering algorithms have been 
developed [3-19], among which the kernel least mean square 
(KLMS) [4] is the simplest, yet often most effective one.   

The KAFs are "black box" models and take no prior 
information about the unknown system into consideration, like 
most other nonlinear adaptive filters. In many cases, however, 
some prior knowledge about the unknown system is available 
and can be incorporated into the model ("grey box" model) to 
improve the learning performance. A general way of 
expressing mathematically the prior knowledge about the 
system is through some kinds of constraints [20]. In recent 
years, a variety of constraints have been successfully 
incorporated into artificial neural networks (ANNs) to achieve 
improved learning performance [20-25]. In the present paper, 
we propose to incorporate some prior constraints into the 

KAFs. In particular, we consider incorporating the equality 
function constraints (EFC) into the KLMS algorithm. A 
similar approach has been applied in ANNs [20]. As stated in 
[20], the equality function constraints have some advantages 
over other equality constraints such as boundary value 
constraints (BVC) [25]. To solve the kernel adaptive filtering 
subject to equality function constraints, we propose a novel 
Mercer kernel, called in this paper the constrained Mercer 
kernel (CMK), which is defined by multiplying the original 
Mercer kernel by a weighting function corresponding to the 
sub-regions of the equality function constraints. Using this 
new kernel, we develop the KLMS subject to equality function 
constraints (KLMS-EFC). Of course, the proposed CMK can 
also be applied to other KAFs and other kernel methods such 
as SVM.  

The rest of the paper is organized as follows. In section II, 
we briefly introduce the KLMS algorithm and describe the 
learning problem subject to equality function constraints. In 
section III, we propose the constrained Mercer kernel and 
develop the KLMS-EFC algorithm. In section IV, we present 
simulation results to demonstrate the desirable performance of 
the KLMS-EFC. Finally in section V, we present our 
conclusions. 

II. KLMS AND EQUALITY FUNCTION CONSTRAINTS 

A. KLMS 

Given a sequence of input-output training examples ,i iu d , 

1,2,i  L , where m

iu U R  , id R ,with U being the input 

domain, our goal is to learn a nonlinear mapping :f U R that 

fits the data well under a specific learning criterion. Under the 
mean square error (MSE) criterion, this learning problem can 
be solved in an online manner (sample by sample) by using 
the KLMS algorithm [4]: 
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where if denotes an estimate of f at iteration i , ie stands for the 

prediction error based on the last estimate 1if  , 0  denotes 

the step-size parameter, and  is a reproducing Mercer kernel 
function defined on U U , i.e. :U U R   . The KLMS 

algorithm (1) is actually the least mean square (LMS) 
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algorithm in kernel space, derived by transforming the 
input iu into the reproducing kernel Hilbert space (RKHS) 

H  induced by the Mercer kernel  and applying the LMS on 

the transformed data [4]. The widely adopted kernel is the 
Gaussian kernel: 
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where 0  is the kernel bandwidth, and . denotes the 

Euclidean norm. As one can see from (1), the KLMS creates a 
growing LIP nonlinear model where the nonlinear 
transformation is determined by the selected Mercer kernel. 
An appealing feature of the KLMS is that the linear 
combination coefficients are directly related to the prediction 
errors. 

B. Equality function constraints 

The KLMS is a "black box" method with which the learned 
model is completely determined by the training data 
(assuming that the step-size and kernel function are given). 

In this paper, some additional constraints will be incorporated 
into the KLMS. Specifically, consider the following equality 
function constraints (EFC) on the learned mapping if  

 ( ) ( )i C Cf u f u u U U   ，   (3) 

where ( )Cf u is a prior known function defined on CU , 

with CU being the constraint domain, a subset of the input 

domain U . The definition domain of the function ( )Cf u can be 

extended to the whole input domain U by defining 

 ( )= ( ) s.t. argmin
C

C C C C
c U

f u f u u u c


    (4) 

Especially, Cu u when Cu U . 

Now our goal is to modify the original KLMS such that the 
learned model strictly satisfies the above constraints while 
achieving improved learning performance. A novel approach 
will be proposed in the next section to address this issue. Note 
that in [20], the equality function constraints were successfully 
applied in an RBF model, which is implemented in a batch 
mode (not an online manner). 

III. CONSTRAINED MERCER KERNEL AND KLMS-EFC 

A. Constrained Mercer kernel 

Definition 1:  The constrained Mercer kernel with respect 
to the constraint domain CU is defined by  

 ( , ) ( ) ( ) ( , ) ,C C Cu u u u u u u u U       ，   (5) 

where ( , )u u  is the original Mercer kernel, and ( )C u is a 

weighting function with respect to the constraint domain CU , 

given by 

 ( ) 1 exp( ( ))C u u       (6) 

where ( ) min
Cc U

u u c


   is the minimal distance from  to the 

constraint domain CU ,and 0  is a parameter for adjusting the 

slope of ( )C u . 

Remark 1: ( )C u is a continuous function of u , which takes 

the value of zero when Cu U , while approaching1.0 when u is 

apart from the constraint domain CU . By definition, the 

constrained Mercer kernel ( , )C u u  will gradually lose its 

learning capability when u gets close to CU . 

Now we prove that ( , )C u u  is really a Mercer kernel 

function over U U . Obviously, ( , )C u u   is a continuous and 

symmetric function over U U . So we only need to prove the 

positive-definiteness of ( , )C u u  . For any n N , and any 

choice of 1 2, , , Nu u u UL and 1 2, , , Na a a RL , we have 
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where ( )i i C ib a u , ( )j j C jb a u , and (7) follows from the fact 

that is a Mercer kernel. Thus ( , )C u u  is positive-definite and 

hence, is also a Mercer kernel. 

Remark 2: Though ( , )C u u  is positive-definite, it is not 

strictly positive definite (SPD) since we have ( , ) 0C u u   for 

any Cu U or Cu U . 

B. KLMS-EFC 

To satisfy the equality function constraints, the initial 
estimate of f is set at 

  0( ) 1 ( ) ( )C Cf u u f u    (8) 

which equals ( )Cf u when Cu U , and approaches zero when 

u is apart from CU . Here, ( )Cf u is given by (4) to cover the 

whole input domain. With the above initialization, the 
proposed KLMS-EFC algorithm becomes the KLMS with the 
constrained Mercer kernel ( , )C u u  , that is 
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Remark 3: If ( )Cf u is a continuous function, the learned 

mapping if is also a continuous function since both ( )C u and 

( , )C u u  are continuous functions. 

Remark 4: The computational complexity of the KLMS-
EFC is almost the same as that of the original KLMS. In 
addition, there is only one extra free parameter in KLMS-EFC, 
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namely the parameter  , which controls the learning rate and 

smoothness around the boundary of CU . 

Substituting (5) into the update rule of KLMS-EFC, we 
obtain 

 1 ( ) (.) ( , )i i i C i C if f e u u        (10) 

From (10) one can observe: 1) if i Cu U , there is no update 

on 1if  (also no dictionary update on the hidden nodes) ; 2) 

if iu is very close to CU , the update rate is very small because 

( ) 0C iu  as ( ) 0iu  . 

Clearly, the learned mapping at iteration i  is 

  
1

( ) 1 ( ) ( ) ( ) ( ) ( , )
i

i C C j C j C j

j

f u u f u e u u u u    


     (11) 

which basically consists of two parts, namely the prior known 

part  1 ( ) ( )C Cu f u and the sequentially learned part 

1

( ) ( ) ( , )
i

j C j C j

j

e u u u u   


 . The second part still has a growing 

linear-in-the-parameters (LIP) structure like usual KAFs 
although there is no dictionary update when i Cu U . To reduce 

the computational costs and memory requirements, one can 
use some sparsification techniques [1] or quantization methods 
[12-14] to curb the network growth and obtain a compact 
model. 

IV. SIMULATION RESULTS 

We present simulation results to demonstrate the 
performance of the proposed KLMS-EFC. Consider the 
following “hyperboloid” function (as shown in Fig.1) [20] 

  1 2 1 2 1,1y u u u u   ， ，   (12) 

and the equality function constraints:  

 2

1( ) ,C Cf u u u U    (13) 

 

Fig.1 “hyperboloid” function 

 

where   1 2 1 2| , , 1,1CU u u u u u    . The goal is to fit the 

function based on the data and the equality constraints. We 
draw 1000 training samples in which 980 samples are drawn 

from the uniform distribution over  1 2, 1,1u u   , and 20 

samples equally spaced in CU . In addition, the testing data 

contain 880 samples in which 800 samples are drawn  from 

the uniform distribution over  1 2, 1,1u u   , and 80 samples 

equally spaced in CU . In the simulation, the training data are 

corrupted by additive Gaussian noise with zero mean and 0.05 
standard deviation. 

Fig.2 shows the performance comparison between KLMS-
EFC ( 1.2  , 1.2  ) and the original KLMS with different 

step sizes ( 0.2 , 0.7 ,1.2 ,1.6 ). In both KLMS and KLMS-EFC, 

the kernel function (.,.) is chosen as the Gaussian kernel with 

bandwidth 0.4  . At each iteration, the testing mean square 

error (testing MSE) is computed on the testing set using the 
filter resulting from the training set. The plotted results are 
obtained by averaging over 50 Monte Carlo runs. As one can 
see, the equality constraints can improve the learning 
performance, and the KLMS-EFC can outperform the KLMS 
with different step sizes. The testing outputs and desired 
responses in constraint domain are shown in Fig. 3. It is 
evident that the model trained by KLMS-EFC fits the data 
much better than the model trained by KLMS. 

Fig.2 Convergence curves in terms of the testing MSE 

 

Fig.3 Testing outputs (cross) and desired responses (circle) in 
constraint domain: (a) KLMS; (b) KLMS-EFC 
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Fig.4 shows the performance of the KLMS-EFC with 
different values of  . As we can see, the leaning process is 

stopped when 0  . In this case we have ( ) 0C u  and 1i if f  . 

But the algorithm can work very well even with a very 
small  . When  is too large (say 12  ), the performance 

will deteriorate. In this example, the best performance is 

achieved at round 1.2  . In the simulation, the step sizes are 

manually chosen such that all the initial convergence speeds 
(except the case 0  ) are visually similar.  is an important 

parameter, but it is relatively easy to choose, as in general a 
small value of  will bring satisfactory results. 

  

Fig.4 Convergence curves with different values of   

To curb the network growth, one can use a quantization 
approach to develop the quantized KLMS-EFC (QKLMS-EFC) 
algorithm (see [12] for the details about QKLMS).  Fig.5 
illustrates the convergence performance of the QKLMS-EFC 
with different quantization sizes (  ), and Fig. 6 shows the 

corresponding testing MSEs versus the dictionary sizes. 
Similar to the QKLMS, there is a trade-off between accuracy 
and dictionary size for the QKLMS-EFC. Usually, a larger 
quantization size leads to a poorer accuracy but a smaller 
dictionary size. With a proper quantization size, however, the 
algorithm can produce a small network while achieving 
desirable performance.  

 

Fig.5 Convergence curves with different quantization sizes 

 

Fig.6 Testing MSEs versus dictionary sizes 

V. CONCLUSION 

Kernel adaptive filters (KAFs) are powerful online 
learning machines. But they are "black box" models and their 
performance can be significantly improved if some prior 
knowledge is incorporated into the learned models. In this 
study, we developed an efficient kernel adaptive filtering 
algorithm by incorporating the equality function constraints 
into the kernel least mean square (KLMS) algorithm. A novel 
Mercer kernel, called the constrained Mercer kernel (CMK), 
was proposed. The kernel least mean square subject to 
equality function constraints (KLMS-EFC) was then 
developed with this new kernel, which can satisfy the 
constraints perfectly while achieving significant performance 
improvement. Simulation results confirmed the excellent 
performance of the new algorithm. 
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