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Abstract—Positron emission tomography is more and more
used in radiation oncology, since it conveys useful functional
information about cancerous lesions. Its rather low spatial
resolution, however, prevents accurate tumor delineation and
heterogeneity assessment. Post-reconstruction deconvolution with
the measured point-spread function can address this issue,
provided it does not introduce undesired artifacts. These usually
result from inappropriate regularization, which is either absent
or making too strong assumptions about the structure of the
signal. This paper proposes a deconvolution method that is based
on inverse problem theory and involves a new regularization
term that preserves local pixel value order relationships. Such
regularization entails relatively mild constraints that are directly
inferred from the observed data. This paper investigates the the-
oretical properties of the proposed regularization and describes
its numerical implementation with a primal-dual algorithm.
Preliminary experiments with synthetic images are presented to
compare quantitatively and qualitatively the proposed method to
other regularization schemes, like TV and TGV.

I. INTRODUCTION

Image restoration methods often address ill-posed problems
and, without proper regularization, solving these can converge
to implausible images, with undesired artifacts. However,
common regularization schemes typically entail some strong
a priori about the image content, which can also favor the
generation of other artifacts. Good solutions must hence reach
a tradeoff that mitigates adequately both trends. In the context
of medical imaging, non-uniqueness of the solution, artifacts,
and tedious parameter tuning cause defiance and make poten-
tial users reluctant to use image restoration.

This paper finds its motivation in the use of positron
emission tomography (PET) in radiation oncology (RO). PET
conveys useful functional information about tumors but suffers
from rather low spatial resolution, while RO, interpretable
as a ballistic problem, crucially depends on their accurate
delineation [1], [2]. Based on the knowledge of the PET
system point-spread function (PSF), image deconvolution is
feasible. However, its adoption remains rather limited, either
as a quantitative restoration tool [3] or as preprocessing to
improve image segmentation [4]–[6]. Similarly, deconvolution
integrated within PET image reconstruction and modeled by
accounting for blur in the forward model of the PET system
remains a challenging issue in both academia [7], [8] and
industry [9].

The driving idea of this paper relies on two assumptions. (i)
Large intensity variations and discontinuities in PET images
are mostly distant from each other, on the scale of the PSF
width. In other words, intensity profiles along each dimen-
sion could be split into only a few monotonic segments.
† Research Associates with the Belgian F.R.S.-FNRS.

Textured patterns, like checkerboards or stripes, would then
be uncommon, except in images of phantoms specifically
designed to measure spatial resolution (like flanged Jaszczak
phantoms with collections of cold rods). (ii) Convolving some
ground truth image with the PSF has little impact on local
order relationships between the value of neighboring pixels.
Well-regularized deconvolution of the blurred image with the
same PSF should hence also affect weakly these relationships.
Non-regularized deconvolution, though, is known to amplify
some high frequencies, which typically causes Gibbs ringing
artifacts to appear. Such spurious oscillations, on the other
hand, clearly violate local order constraints on pixel values.

This paper proposes a deconvolution method with a regu-
larization scheme that enforces the preservation of local order
relationships. In practice, this is achieved by constraining
the sign of the derivatives approximated with finite differ-
ences. Preventing such sign changes is obviously milder than
other regularization schemes that favour sparsity of finite
differences, like total variation (TV) [10]. Those amount
to assuming that gradient norm is null almost everywhere,
which yields potentially cartoon-like or blocky images with
staircasing artifacts. In addition to formulating the inverse
problem of deconvolution with local order preservation and
solving it numerically, the main contributions of this paper
are also to investigate the validity of local order preservation
and how to estimate order relationships from noisy data.

The rest of this paper is organised as follows. Sec. II
introduces the forward model we assume for PET images.
Sec. III formulates the inverse problem with local order-
preserving constraints. Sec. IV investigates the validity of
local order preservation and how order relationships can be
identified in spite of noise. Sec. V details the numerical
implementation. Sec. VI and Sec. VII present the experiment
setup and discuss the results. Eventually, Sec. VIII draws
conclusions and sketches perspectives for future work.

II. FORWARD MODEL

For the purpose of simplicity, we directly adopt a dis-
crete framework. The vectorized d-dimensional signals of size
N1 × · · · × Nd belong to the Euclidean space RN with
N =

∏d
i=1Ni. Let u0 ∈ RN be the original (unknown) PET

image of the radioactivity in a patient body. After tomographic
reconstruction, we observe z ∈ RN , a version of u0 blurred
by operator H and corrupted by a noise Nν of parameter ν,

z = Nν(H(u0)).

H accounts for both the physical and instrumental inaccura-
cies limiting the spatial resolution of the acquired data. In the
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2D-plane, it is usually measured by imaging a point source of
radioactivity [11]. We assume in first approximation that the
blur is uniform (H is linear), Gaussian and isotropic near the
center of the field-of-view [11]. The blurred image therefore
results from the convolution of u0 with h ∈ RN , the kernel
associated with H ∈ RN×N . We consider the noise as additive
and Gaussian: n ∈ RN with ni ∼

i.i.d.
N (0, σ2

n), i ∈ {1, . . . , N}.
Then,

z = Hu0 + n. (1)

Regarding the physics of PET imaging, we constraint model
(1) with (i) positivity of u0 (measure of a nonnegative radioac-
tivity) and (ii) photometry invariance, i.e., the preservation of
total photon counts in the original and observed images.

III. INVERSE PROBLEM FORMULATION

From observations z, we want to find the best estimate
û0 ∈ RN of u0, considering the impact of the noise and
such that Hû0 ' z. Finding such estimate is challenging:
the problem could be ill-posed, e.g., if H is ill-conditioned
and consequently, non invertible. We have no guarantee on
the unicity of the solution. To fix this issue and reduce the set
of feasible solutions, a widely used method is to regularize
the problem [12]. A penalty term encourages the solution to
respect a certain prior model of the original image (e.g., spar-
sity in specific basis, small TV-norm, etc. [12], [13]). These
a priori assumptions are often valid for particular classes of
signals and do not directly depend on the observations.

A. Local constraints

The key idea of our method is to regularize the problem by
locally constraining the order relationships between the value
of neighboring signal samples. The constraints are inferred
from the observed data z and in this way, do not assume a
direct prior model on the signal u0.

Definition 1. The discrete d-dimensional gradient operator ∇
applicable to signals in RN is defined as

∇ : RN → RdN ,x 7→ (∇x) = (∇1x
T , . . . ,∇dxT )T ,

with ∇i ∈ RN×N the first spatial derivative in direction ei,
approximated using forward first-order finite differences.

The matrix A ∈ RdN×N is sparse and defines the order
constraints between the value of neighboring elements of u0.
Ideally, if u0 was known at restoration, it is defined by A :=
−diag(sign(∇u0))∇, so that u = u0 satisfies Au � 0.

B. Strict and relaxed formulations

The non-smooth convex problem is

minimize
u∈RN

‖Hu− z‖22

subject to Au � 0, u � 0,
∑N
i=1 ui =

∑N
i=1 zi,

(2)

where the last constraint results from photometry invariance
property. A relaxed formulation of problem (2) could tolerate
the violation of some constraints, as long as they do not accu-

mulate “too much”. The constraint Au � 0 is replaced with
a one-sided `1-norm defined as ‖(x)+‖1 = ‖max (0,x)‖1,

minimize
u∈RN

‖(Au)+‖1

subject to Hu ∈ B, u � 0,
∑N
i=1 ui =

∑N
i=1 zi,

(3)

where B = {x ∈ RN |‖x− z‖22 ≤ σ2
n(N + c

√
N), c = O(1)}

since we have some knowledge on the statistics of the noise.

C. Approximation of matrix A

Assuming that H preserves most of the order re-
lationships of u0, we approximate A with AH :=
−diag(sign(∇Hu0))∇. H is said to be order-preserving and
we can bound the number of wrong inequalities in AH with
respect to A (see Def. 3).

Definition 2. The normalized Hamming distance between x
and y ∈ RN is defined as dH(x,y) = 1

N

∑N
i=1 xi⊕yi, where

symbol ⊕ denotes the logical XOR operation.

Definition 3. Operator H is order-preserving with parameter
τ ∈ [0, 1] on the class of functions A if

dH(sign(∇Hx), sign(∇x)) ≤ τ, ∀x ∈ A,

subsequently denoted by OP(τ,A).

When observations are corrupted only by a blurring operator
H , i.e., z = Hu0, then AH := −diag(sign(∇z))∇. When
data are corrupted by both blur and noise, i.e., z = Hu0 +n,
order relationships are mostly not preserved in z anymore.
From observations z, we estimate the gradient of the noiseless
(but still blurred) observations v0 := ∇Hu0, by solving

minimize
v∈RdN

‖(∇, . . . d-times . . . ,∇)v‖2,1 + ıD(v),

where D = {x ∈ RN |‖x − ∇z‖22 ≤ 2σ2
n(N + c

√
N)} with

c = O(1) [14], [15]. The TV prior prevents oscillations of v.

IV. ON ORDER PRESERVATION

This section provides upper bounds of the normalized quan-
tity of violated inequalities in AH , i.e., dH(sign(∇(Hx +
n), sign(∇x)). This theoretical analysis characterizes among
others the OP property and its parameter τ for a particular
class of 1D piecewise monotonic signals.

Definition 4. C(S) denotes the class of `2-functions: Ω :=
{1, . . . , N} → [0, 1], monotonic on each of their S sub-
domains Ωj , with S ≥ 1 and j ∈ {1, . . . , S}.

Proposition 1. Let h ∈ RN be a non-negative kernel with
|supp(h)| = 2p+1. Then, the associated convolution operator
H ∈ RN×N is OP(τ, C(S)) with τ = min (2pS/N, 1).

2p p

Ω1 Ω2 Ω3
i

xi

Fig. 1: Signal x ∈ C(3) on Ω = Ω1∪Ω2∪Ω3. Preservation of order
relationships is uncertain for elements in gray areas.
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Fig. 2: Mean proportion (1000 realizations) of wrong inequalities in AH as a function of the number of sub-domains S for 1D piecewise-
linear signals in C(S) (N = 1001) blurred by Gaussian unimodal or bimodal kernel (σ = 2, |supp| = 13) and (right) corrupted by Gaussian
noise (σn = 0.01). Solid lines: AH computed from z; dashed lines: AH computed from v̂. Gray areas represent the standard deviation.

Proof. Let x be a signal in C(1), monotonically increasing on
Ω. The discrete convolution with kernel h is defined as

yn =
∑p
m=−p hmxn−m, ∀n ∈ Ω,

with unknown boundaries conditions. Let J = {1, . . . , p} ∪
{N−p+1, . . . , N} be the set of 2p elements at the boundaries
of the domain. Let i, j ∈ Ω \ J such that i ≤ j and xi ≤ xj .
Then,

yi =
∑p
m=−p hmxi−m ≤ yj =

∑p
m=−p hmxj−m,

since hm ≥ 0 and xi−m ≤ xj−m,∀m ∈ {−p, . . . , p}.
Operator H preserves the gradient sign of x on Ω\J . On J ,
preservation is uncertain and depends on the boundaries condi-
tions. Now, let x be a signal in C(S). On each sub-domain Ωj ,
the signal belongs to C(1) (see Fig. 1). On J = ∪Sj=1Jj , the
preservation of order relationships is uncertain. We can bound
the number of non-preserved inequalities by the number of
uncertain ones, i.e., the cardinality of J ,

NdH(sign(∇Hx), sign(∇x)) ≤ |J | ∈ [0, N ] .

In the worst case, |Jj | = 2p, ∀j ∈ {1, . . . , S}, and the
normalized number of uncertain relationships is 2pS/N .

Let x ∈ C(S). Distance dH(sign(∇(Hx + n)), sign(∇x))
can be rewritten as dH(sign(∇Hx+ ñ), sign(∇x)). Since ∇
is approximated by forward first-order finite differences, ñi =
(∇n)i ∼ N (0, 2σ2

n) and neighbors elements ñi and ñi+1 are
not independent anymore. As Hamming distance satisfies the
triangle inequality,

dH(sign(∇Hx + ñ), sign(∇x)) ≤ dH(sign(∇Hx), sign(∇x))

+ dH(sign(∇Hx + ñ), sign(∇Hx)).

The first term is deterministic and imputable to the blurring
model. It is bounded by τ (see Prop. 1), since h in (1) is
assumed to be Gaussian and is consequently non-negative with
a finite support {−p, . . . , p} including more than 99% of its
total energy. The second term, denoted dñ, can be considered
as the stochastic error due to the noise.

By linearity, the expected value of dñ is equal to the
normalized sum of element expectations Ei bounded by

Ei = P [((∇Hx)i + ñi)(∇Hx)i ≤ 0] = P (ñi ≥ |(∇Hx)i|)

=

∫ +∞

|(∇Hx)i|√
2σn

1√
2π
e−s

2/2 ds ≤ 1

2
e−(∇Hx)2i /4σ

2
n .

The tail of standard normal distribution
∫ +∞
t

1√
2π
e−t

2/2 dt is

bounded by 1
2e
−t2/2, for t ≥ 0 [16]. Independence of odd and

of even elements in dñ = dñ,odd +dñ,even allows us to use the
following Hoeffding inequality [14] and the union bound,

P
(
dñ ≥ 1

2N
(
∑

odd e
−(∇Hx)2i /4σ

2
n +

∑
even e

−(∇Hx)2i /4σ
2
n) + 2δ

)
≤ 2P (dñ,odd ≥ 1

2N

∑
odd e

−(∇Hx)2i /4σ
2
n + δ)

≤ 2P (dñ,odd ≥ 1
N

∑
odd Ei + δ) ≤ 2e−4Nδ2 ,

with δ > 0, chosen such that 2e−4Nδ
2

= 0.01. Finally,

dH(sign(∇Hx + ñ), sign(∇x))

≤ min ( 2pS
N

+ 1
2N

∑N
i=1 e

−(∇Hx)2i /4σ
2
n + 2

√
ln 200
4N

, 1), (4)

with probability greater than 0.99. In Fig. 2, the theoretical
bounds are compared to the empirical ones obtained for
different kernels k and different levels of noise.

V. NUMERICAL IMPLEMENTATION

In this section, we introduce the Chambolle-Pock (CP)
primal-dual algorithm [13] in order to solve problems (2) and
(3), introduced in Sec. III. It belongs to the family of proximal
algorithms, that can be used for optimization of nonsmooth
and non differentiable objective functions. The CP algorithm
is designed to solve the saddle-point problem

minimize
x∈X

maximize
y∈Y

G(x) + 〈Lx,y〉 − F ?(y), (5)

where L : X → Y is a linear continuous operator with a norm
‖L‖2 := max{‖Lx‖2 | x ∈ X with ‖x‖2 ≤ 1}. G : X →
[0,+∞[ and F ? : Y → [0,+∞[ are proper, convex and lower-
semicontinuous (l.s.c.) functions. F ? is the Legendre-Fenchel
conjugate of F . Formulation (5) is a primal-dual formulation
of the primal problem minimizex∈X F (Lx) +G(x).

Let ϕ be a l.s.c. convex function from X to ]−∞,+∞[ such
that domϕ is non empty. The proximal operator of ϕ : X → X
evaluated in x̃ ∈ X is unique and defined as proxϕ(x̃) :=
arg minx∈X

1
2‖x̃− x‖22 + ϕ(x) [17].

A compact formulation of (2) and (3) is given by

minimize
u∈RN

F1(Hu) + F2(Au) +G(u),

where F1(x) = ıB(x) with B = {x ∈ RN |‖x − z‖22 ≤
σ2
n(N + c

√
N), c = O(1)}. Function F2(x) = ıRN− (x) in (2)
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Fig. 3: Mean ISNR (100 realizations) of 1D piecewise-cubic signals of length N = 1001 in C(S) (left: S = 7, right: S = 47) restored with
different methods (LD, TV, OP and ROP). Original signals are blurred by Gaussian unimodal kernel (σ = 2, |supp| = 13) and corrupted by
additive Gaussian noise (σn = 0, σn = 0.005 and σn = 0.01). Error bars represent the standard deviation of the sample.

and F2(x) = ‖x+‖1 in (3). Finally, G(x) = ıRN+ (x) + ıP(x)

with P = {x ∈ RN |
∑N
i=1 xi =

∑N
i=1 zi}.

A primal-dual formulation similar to (5) is derived in a
product space [18] using duality principles [12] and leads to
Algorithm 1. Let x̃ ∈ RN . The proximal operator of the primal
function G is given by a combination of positivity (max) and
photometry invariance (average) proximal operators [17],

proxσG(x̃) = max(x̃, 0)− 1
N

∑N
i=1 (max(x̃, 0))− z)i .

Using the Moreau decomposition property [17], the proxi-
mal operator of F ?1 is proxσ(n)F?1

(x̃) = x̃−σ(n)ΠB(x̃/σ(n)),
where ΠB is the projection on the `2-ball B. In formulation (2),
the proximal operator of F ?2 is proxσ(n)F?2

(x̃) = max (x̃,0).
In formulation (3), the proximal operator of F ?2 is

proxσ(n)F?2
(x̃) = x̃−min (max (|x̃| − 1,0) · sign(x̃), x̃).

VI. EXPERIMENTS

Simulations are done first on 1D piecewise-cubic signals of
length N = 1001 with S sub-domains. Original signals are
blurred by normalized Gaussian unimodal or bimodal kernel
(σ = 2) and eventually corrupted by additive Gaussian noise.
The bimodal kernel is obtained from the unimodal one by
flipping its left and right halves. Experiment 1 computes the
mean Hamming distance between A and AH for different S
and compares it to the theoretical bounds of Prop. 1 and (4).
Experiment 2 compares the quality of signals restored with
different deconvolution methods: Landweber with positivity
constraint (LD) [19], TV regularization (TV) [20], local order
preservation (OP) and relaxed local order preservation (ROP).

The synthetic image used for 2D experiments is a modified
Shepp-Logan phantom of size 128 × 128, with intensities in
[0, 255]. The constant surfaces of original phantom have been
replaced with a mixture of affine, Gaussian and sinusoidal

Algorithm 1 for local order-constraining deconvolution.

1: initialization: n = 0 ; u(0) = ū(0) = z ∈ RN ; p(0) = 0 ∈ RN ;
q(0) = 0 ∈ RdN ; choose τ (0) = σ(0) = 0.9/‖(HTAT )T ‖2.

2: repeat
3: p(n+1) = proxσ(n)F?1

(p(n) + σ(n)Hū(n))

4: q(n+1) = proxσ(n)F?2
(q(n) + σ(n)Aū(n))

5: u(n+1) = proxτ(n)G(u(n) − τ (n)(H∗p(n) + A∗q(n)))

6: ū(n+1) = 2u(n+1) − u(n)

7: until convergence of u

functions, more representative of real medical data. Original
images are convolved with isotropic Gaussian kernel (σ =
1.2 and σ = 2) and corrupted by additive Gaussian noise
(σn = 0.5, σn = 1 and σn = 2.5). Experiment 3 compares the
quality of images restored with TV, total generalized variation
regularization (TGV) [10], OP and ROP.

The quality of restored signals û0 and observations
is measured using the increase in SNR, ISNR =
20 log10 ‖z − u0‖2/‖û0 − u0‖2 and the blurred SNR,
BSNR = 10 log10 var(Hu0)/σ2

n, respectively. Statistical
comparisons of the ISNR are realized with Welch’s t-test
(statistical significance: 0.05).

VII. RESULTS AND DISCUSSION

Results of experiment 1 (see Fig. 2) show that, unlike
theoretical bound, the empirical number of wrong inequalities
in AH increases slowly with S, even when |supp(h)| > N/S.
This evolution is related to the shape of kernel h. Asymetrical
kernels (not shown here) give however results similar to
bimodal kernels. In 2D, we could expect comparable results,
considering separately each dimension as a signal in C(S).
Figure 3 illustrates the results of experiment 2. Since LD can-
not deal with the presence of noise, only results for σn = 0 are
presented. As expected, this method leads to restored signals
of poor quality, with Gibbs artifacts. In absence of noise,
ROP provides significantly better results than other methods.

Fig. 4: Results on synthetic data. From left to right and top to bottom:
original image, corrupted image (convolution with isotropic Gaussian
kernel (σ = 2, |supp| = 13 × 13) and corruption with additive
Gaussian noise (σn = 1)), TV, TGV, OP and ROP restored images.
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Fig. 5: Mean ISNR (100 realizations) of 2D images of size 128 × 128 restored with different methods (TV, TGV, OP and ROP). Original
images are blurred by Gaussian unimodal kernel (left: σ = 1.2, right: σ = 2, |supp| = 13× 13) and corrupted by additive Gaussian noise
(σn = 0.5, σn = 1 and σn = 2.5). Error bars represent the standard deviation of the sample.

Excepting results for ROP/TV when (S = 7, σn = 0.005)
and OP/ROP when (S = 47, σn = 0.01), ISNR of the three
methods are significantly different.

Results of experiment 3 are illustrated on Fig. 4 and Fig. 5.
Except for TV/ROP when (σ = 1.2, σn = 2.5), ISNR of
images restored with OP and ROP methods are significantly
different from each other and from TV and TGV ISNR. For
small level of noise, TV, TGV and OP show a high increase in
SNR compared to OP, as for the 1D results. For higher levels
of noise, the proposed methods - OP or ROP - give the best
results. Fig. 4 shows the restored images for (σ = 2, σn = 1).
ISNR are significantly different as well as their visual aspect:
except for TGV which visually provides the best restoration, all
methods produce images with staircasing artifacts. Unlike TV,
the other methods, and in particular ROP, restore more accu-
rately the small objects, which might improve the detectability
of small cancerous lesions in PET images.

VIII. CONCLUSION

A deconvolution method equipped with a new regularization
has been proposed. The driving idea is that convolution with
blurring kernels has limited impact on the sign of derivatives.
On the other hand, deconvolution tends to produce ringing
artifacts that typically flip many derivative signs. To avoid
such spurious oscillations without making strong assumptions
about the image content, the proposed regularization enforces
derivative signs in the deconvolved image, after estimating
them from noisy measurements. In this way, the proposed
method exploits information present in the observed image.
Results validate the interest of the OP and ROP methods. ISNR
values and visual aspect are comparable to those obtained
with TV and TGV restoration and are even better for high
levels of noise. Perspectives for future work aim at applying
the proposed method to real PET images. For this purpose,
the method has to be extended to three dimensions and
Poisson noise, e.g., through a variance stabilizing transform.
Noise filtering and its desirable properties in this particular
application will be investigated further, since they condition
the correct estimation of derivative signs, i.e., AH .
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