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Abstract—With the increasing size of today’s image and video
data sets, standard pattern recognition approaches, like kernel
based learning, need to face new challenges. Kernel-based meth-
ods require the storage and manipulation of the kernel matrix,
having dimensions equal to the number of training samples.
When the data set cardinality becomes large, the application of
kernel methods becomes intractable. Approximate kernel-based
learning approaches have been proposed in order to reduce the
time and space complexities of kernel methods, while achieving
satisfactory performance. In this paper, we provide a overview
of such approximate kernel-based learning approaches finding
application in media data analysis.

I. INTRODUCTION

Media data analysis plays a key role in many applications,
including security, human-computer interaction and human
behaviour analysis for assisted living, to name a few. Spe-
cific media data analysis problems that have been heavily
researched during the last two decades are facial image and
action video analysis and classification [1], [2], [3], [4],
[5]. For these problems, it has been shown that the use of
linear modeling approaches provides inferior performance,
when compared to nonlinear ones. This is why they have
been primarily approached by exploiting nonlinear models,
like kernel-based learning approaches [6], [7]. Such models
have been widely adopted in many small- and medium-scale
classification problems due to their excellent performance,
theoretical foundation and easy implementation. However, in
the case of big data analysis, standard kernel-based learning
becomes impractical.

Challenges that need to be appropriately addressed in order
to achieve practical implementations are related to the models’
space and time complexities. In kernel-based learning, the
so-called kernel matrix containing the dot product values
between all training data pairs in the kernel space needs to be
calculated and an optimization problem involving the kernel
matrix needs to be solved. This process typically has space and
time complexities which are quadratic and cubic with respect
to the cardinality of the training set. During the test phase, one
needs to store the training data1 for dot product evaluation with
a test sample, which has a linear time complexity with respect
to the training data size. Thus, for problems involving media

1In kernel methods involving sparse models (like SVMs), one needs to store
a subset of the training data.

data sets available today, where the number of samples is of
the order of millions, the use of standard kernel models is
impractical.

In order to address these challenges approximate approaches
for kernel-based learning have been proposed. In this paper,
we overview such approximation approaches and discuss their
application in big media data analysis. We start by describing
the problem of Big Media Data analysis using kernel-based
learning. Subsequently, we group the various approaches in
categories depending on the type of approximation they use
and we describe the basic constructive principles of each
category and their connections with specific methods proposed
in the literature.

II. PROBLEM STATEMENT

Let us denote by U an annotated media database formed by
N samples. Depending on the application, samples forming U
may be text, images or videos. Let us also assume that these
samples have been pre-processed in order to obtain vectors
xi ∈ RD, i = 1, . . . , N , each representing a sample in U in a
D-dimensional feature space preserving properties of the data
which are useful for the subsequent analysis.

Standard kernel methods exploit the so-called kernel func-
tion κ(·, ·) defined on D-dimensional data pairs {xi,xj} and
expressing dot products of the data representation in the kernel
space F , i.e.:

κ(xi,xj) , ϕ(xi)
Tϕ(xj), (1)

where ϕ(·) is a nonlinear function mapping a D-dimensional
vector to the kernel space F :

xi ∈ RD ϕ(·)−→ ϕ(xi) ∈ F . (2)

The dimensionality of F is arbitrary and depends on the kernel
function choice. For example, the kernel space dimensionality
for the linear kernel function is equal to D, while for the Radial
Basis Function kernel its dimensionality is infinite. After
applying the nonlinear mapping in (2), one solves the original
(linear) problem in F . Linear modeling in F corresponds to
a nonlinear model in the input space RD. Let us denote by
Wϕ ∈ R|F|×Q a matrix containing parameters of the linear
model learned in the kernel space F . When Wϕ contains the
parameters of a (multi-class or One-Versus-Rest) classification
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model, Q is equal to the number of classes, while when the
learnt model corresponds to linear projection Q denotes the
dimensionality of the sub-space.

As a concrete example, let us consider the (kernel) regres-
sion problem optimizing the following criterion:

J =
N∑
i=1

∥WT
ϕϕ(xi)− ti∥22, (3)

where ti ∈ RQ is the target vector for xi. The regression
model (3) has been used for both classification and dimen-
sionality reduction [10], [8], [9]. For example, as shown in
[10], Fisher Discriminant Analysis is equivalent to a regression
problem using target values {−1, 1} and Kernel Discriminant
Analysis is equivalent to a kernel regression problem using
class-dependent target vectors [9]. In order to handle issues
related to the arbitrary dimensionality of F , the kernel trick
is exploited, which states that the model parameters can
be expressed as a linear combination of the training data
representations in F , i.e.:

Wϕ = ΦA, (4)

where Φ = [ϕ(xi, . . . , ϕ(xN )] ∈ R|F|×N and A ∈ RN×Q.
Substituting (4) in the optimization problem to be solved ((3)
in our case), we obtain:

J =

N∑
i=1

∥ATΦTϕ(xi)− ti∥22 = ∥ATK−T∥2F , (5)

where T = [t1, . . . , tN ] ∈ RQ×N . K ∈ RN×N is the
so-called kernel matrix having elements equal to [K]ij =
κ(xi,xj), i = 1, . . . , N, j = 1, . . . , N . In standard kernel
methods K is restricted to be positive semi-definite, while ap-
proaches exploiting indefinite and generic similarity matrices
have also been proposed [11], [12]. The solution of (5) is given
by:

A = (K+ δI)
−1

TT , (6)

where δ > 0 is a regularization parameter used to scale the
diagonal elements of K in the case of singularity. As can be
seen, the solution involves the inversion of a N × N matrix
which typically has a time complexity in the order of O(N3)
and a space complexity of O(N2).

III. APPROXIMATION APPROACHES

In order to alleviate the time and space complexity of
standard kernel methods, approximate approaches have been
proposed. We categorize these approaches in the following
categories:

• Methods exploiting low-rank a approximation of K,
• Methods exploiting a reduced kernel space definition,
• Methods exploiting a randomized kernel space definition.

In the following, we provide a description of all three ap-
proaches and show how they can be applied for nonlinear
regression.

A. Methods exploiting low-rank a approximation of K

Methods belonging to this category try to determine a low-
rank approximation of the kernel matrix K ∈ RN×N using a
rectangular matrix C ∈ RN×n, n ≪ N , i.e.:

K ≈ K̃ = CCT . (7)

Using C instead of K both the space and time complexities
of the model can be highly reduced. For example, by substi-
tuting (7) in (5) and exploiting the WoodBury formula, the
approximate kernel regression solution can be obtained by:

A ≃
(
K̃+ δI

)−1

TT =
1

δ

[
I−C

(
δI+CTC

)−1
CT

]
TT .

(8)
By comparing (6) and (8), we can observe that the approximate
solution requires the inversion of an n×n matrix, reducing the
overall time complexity of the kernel regression model from
O(N3) to O(nN2+n3). Regarding the space requirements of
the approximate solution, one needs to store an n×N matrix,
thus highly reducing it in the case where n ≪ N .

Clearly, the performance of methods exploiting a low-rank
approximation of K highly depends on the choice of C. One
of the possible choices involves the spectral decomposition
of K. Let us denote by Λ ∈ RN×N a (diagonal) matrix
containing the eigenvalues and by U ∈ RN×N matrix formed
by eigenvectors of K. Then, K = UΛUT . In order to obtain
an n-rank approximation of K, one can keep the largest n
eigenvalues λ1 ≥ λ2 ≥ · · · ≥ λn and the corresponding
eigenvectors u1, . . . ,un in order to form the matrices Λn =

diag(λ1, . . . , λn) and Un = [u1, . . . ,un]. Then, C = UnΛ
1
2
n .

While the above-described process will lead to the analysis
of the approximate kernel matrix K̃ = UnΛnU

T
n (which is

the best approximation of K in terms of Frobenius norm) it
requires the calculation of K and its eigen-decomposition.

In order to speedup the eigenvector and eigenvalue calcula-
tion process and reduce the memory requirements of this ap-
proach, an approximate Singular Value Decomposition (SVD)
method has been proposed in [13]. It is based on sampling n
columns of K according to probability values pi in order to
form a matrix G ∈ RN×n. The columns of G are scaled using
a factor 1√

npk
, where pk corresponds to the k-th column of G.

Then, the eigenvectors and eigenvalues of K are approximated
by the eigenvectors of the matrix G̃ = GTG. Specifically, the
eigenanalysis of G̃ is applied to get the left singular vectors
and the singular values of G, i.e. G̃ = GTG = VΣVT .
Then, the left singular vectors of G (and, thus, the eigenvectors
of K̃) are obtained by U = GVΣ†, where the superscript ·†
denotes the Moore-Penrose pseudo-inverse. A special case of
this process is uniform sampling, i.e. when probability values
pi =

1
N are used [19].

Another low-rank approximation matrix approach exploits
the projection of the kernel matrix K using a random (Gaus-
sian) matrix Ω ∈ RN×n, i.e. Y = KΩ [15]. Subsequently,
orthogonal matrix decomposition is applied, i.e. Y = QR,
where Q ∈ RN×n is an orthogonal matrix, and K is mapped
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to the matrix Q by applying B = QTKQ ∈ Rn×n. Then,
the matrix C is obtained by C = QÛD

1
2 , where Û and D

are the eigenvectors and eigenvalues of B, i.e. B = ÛDÛT .
While this approach leads to reduced computational cost for
the subsequent kernel-based learning process, its memory
complexity is not reduced, since it requires the calculation
of the entire kernel matrix K.

Perhaps the most widely used low-rank approximation ap-
proach for kernel-based learning exploits the Nyström method,
which has been originally proposed for approximating eigen-
functions. Subsequently, it has been successfully employed for
approximating the eigenvalues and eigenvectors of positive
semi-definite matrices for kernel-based learning [16], [17],
[18]. The standard Nyström method exploits a sub-matrix of
the original kernel matrix K in order to determine its low-rank
approximation.

Let us denote by KNn ∈ RN×n the sub-matrix of K
that is formed by the columns corresponding to n samples.
In addition, let us denote by Knn the sub-matrix of K
that is formed by the intersection of the columns and rows
corresponding to the n selected samples. By applying eigen-
decomposition on Knn we obtain:

Knn = U(n)Λ(n)U
T
(n). (9)

The matrix containing the n leading eigenvectors of K can be
approximated by the Nyström extension by:

Un ≈ KNnU(n)Λ
−1
(n). (10)

An n-rank approximation of K is given by exploiting (9) and
(10):

K ≈ K̃ = KNnK
−1
nnK

T
Nn = GGT , (11)

where G = KNnK
− 1

2
nn .

In the case where the true rank of K is smaller or equal to n,
the approximation in (11) is exact. When this is not the case,
errors occur and (10), (11) are approximations of Un and K,
respectively. Regarding the selection of the matrices KNn and
Knn, the following processes have been proposed: uniform
sampling [16], [19], probabilistic sampling [20], column-norm
sampling [13], adaptive sampling [19], [21], clustering-based
sampling [22] and deterministic sampling [23]. Extensions
of the standard Nyström method include the Density Weight
Nyström method [24], the Nyström method by spectral shifting
[25], the ensemble Nyström method [26] and the CUR-based
Nyström method [27].

Another kernel matrix approximation approach exploits
explicit feature maps, so that the dot product of the derived
data representations will be approximately equal to the dot
product of the data representations in the kernel space for
shift-invariant kernel function [28], [29].

Low-rank approximation methods have been employed in
regression-based classification, spectral clustering and mani-
fold learning problems involving images in [16], [33], [28],
[34]. As it was demonstrated in these works, the derived
models can achieve satisfactory performance, while achieving
considerable computational gains.

B. Methods exploiting a reduced kernel definition

Methods following a reduced kernel approach can be cate-
gorized in those solving a reduced learning problem [30], [32]
and the ones exploiting a reduced kernel trick definition [35],
[36], [37], [40], [38], [39].

Methods solving a reduced learning problem employ a
sampling process in order to reduce the cardinality of the
training set used for model creation. Let us denote by X =
[x1, . . . ,xN ] ∈ RD×N a matrix formed by the vectors forming
the original training set and by X̃ ∈ RD×K a matrix formed by
the training samples selected for solving the reduced learning
problem. Training data selection can be performed either by
using random (or uniform) sampling or by evaluating the
importance of each sample before selection, e.g. the extreme
points for SVM [31]. In the case of random sampling, X̃ can
be obtained by:

X̃ = XPJ, (12)

where P ∈ RN×N is a (column) permutation matrix and
J ∈ RN×K is a diagonal matrix with ones. Attention should be
given in sampling adequate number of samples for each class
of the problem. After the determination of the reduced training
set, a model is obtained by optimizing the original criterion
on the smaller data set. While this approach sets the strong
assumption that properties of interest between the classes
forming the problem at hand are preserved, it has been shown
that for several sample density functions and optimization
criteria, it provides the best approximation performance [32].

Methods employing a reduced kernel trick [35], [37], [40],
[38], [39] exploit an approximation of (4), i.e.:

Wϕ = Φ̃Ã, (13)

where Φ̃ = [ϕ(z1), . . . , ϕ(zK)] ∈ R|F|×K and Ã ∈ RK×Q.
That is, it is assumed that the model parameters can be
expressed as a linear combination of reference vectors zk, k =
1, . . . ,K in F .

Substituting (13) in (3), we obtain:

J =
N∑
i=1

∥ÃT Φ̃Tϕ(xi)− ti∥22 = ∥ÃT K̃−T∥2F , (14)

where K̃ ∈ RK×N is a reduced kernel matrix having elements
equal to [K̃]ij = κ(zi,xj), i = 1, . . . ,K, j = 1, . . . , N . Ã is
then given by:

Ã =
(
K̃K̃T

)−1

K̃TT , (15)

As can be seen, the solution involves the inversion of a K×K
matrix, and has a time complexity in the order of O(K3+N2)
and a space complexity of O(KN). Reference vectors can be
can either be obtained by random training vector sampling
[35], [37] or can be determined as the centroids obtained by
applying a clustering technique, e.g. K-means, on the training
data [40], [38], [39], [41]. The Nyström method has also been
used in order to determine a nonlinear data mapping from the
input space to a subspace of the kernel space in [42].
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Methods exploiting a reduced kernel definition have been
applied in facial image classification and verification problems
[37], [38], [39], [41], [42], as well as on semi-supervised
learning [36], [40].

C. Methods exploiting a randomized kernel definition

Methods belonging to this category exploit the connection
between kernel techniques and infinite single-hidden layer
(SLFN) networks [43], [44]. For SLFN networks employing
a linear activation function for the network output layer, by
letting the number of hidden layer neurons L go to infinity
and setting a Gaussian prior to the hidden layer weights
vk ∈ RD, k = 1, ..., L, L → ∞, the evaluation of Ev[hi,hj ]
for all pairs of the training data representations in the feature
space determined by the network’s hidden layer outputs ϕi

leads to the determination of the covariance function needed
to describe the SLFN network as a Gaussian process. These
expectations are obtained by integrating over the relevant
probability distributions of the biases and the input weights
v.

For a Gaussian prior over the distribution of vk so that vk ∼
N(0, σ2

vI), the adoption of an RBF hidden layer activation
function ϕ(xi,vk) = exp

(
−∥xi−vk∥2

2

2σ2
g

)
leads to a covariance

function of the form:

C(xi,xj) = sDe

(
− ∥xi∥

2
2

2σ2
m

)
e

(
−

∥xi−xj∥
2
2

2σ2
s

)
e

(
−

∥xj∥
2
2

2σ2
m

)
, (16)

where s = σe

σv
, σ2

e = (σ2
v + σ2

g)/(σ
2
vσ

2
g), σ

2
s = 2σ2

v + σ4
g/σ

2
v

and σ2
m = 2σ2

v + σ2
g . If σ2

v → ∞, we find that C(xi,xj) ∝
exp

(
−∥xi−xj∥2

2

2σ2
s

)
, i.e. the RBF kernel function defined on the

training (and test) data xi.
For the case of sigmoid hidden layer activation function, by

making the assumption that vk, k = 1, . . . , L are drawn from
a zero-mean Gaussian distribution with covariance matrix Σ,
i.e., vk ∼ N(0, σ2

vΣ), the corresponding covariance function
is given by [44]:

C(xi,xj) =
2

π
sin−1 x̃T

i Σx̃j√(
1 + x̃T

i Σx̃i

) (
1 + x̃T

j Σx̃j

) , (17)

where x̃i is the augmented input vector x̃i = [1,xT
i ]

T .
Exploiting this connection between the K and the covari-

ance matrix of infinite SLFN networks, an approximation of
the K can be obtained by randomly sampling vk, k = 1, . . . , L
vectors in RD according to a multi-dimensional distribution
(e.g Gaussian). That is, let us denote by h(·, ·) an activation
function, like the RBF and sigmoid functions, defined over
the input data xi and the network’s hidden layer weights vk.
Let us also denote by H ∈ RL×N a matrix having elements
[H]ki = h(vk,xi), k = 1, . . . , L, i = 1, . . . , N . Then,
K ≈ HTH [45]. Thus, one can exploit the training vectors
hi ∈ RL, i = 1, . . . , N in order to train a linear model, which
corresponds to a nonlinear model in the input space RD.

For example, the nonlinear regression problem can be
defined over the data representations hi as follows:

J =
N∑
i=1

∥WT
hhi − ti∥22, (18)

where Wh ∈ RL×Q is a matrix containing the parameters of
the linear model in RL. Wh is obtained by:

Wh =
(
HHT

)−1
HTT . (19)

As can be seen, the solution involves the inversion of a L×L
matrix, and has a time complexity in the order of O(L3+N2)
and a space complexity of O(LN).

The above-described approach has been exploited in Ex-
treme Learning Machine-based learning models for (semi-
)supervised learning [46], [47], [50], [51], [48], [49] and di-
mensionality reduction [52], as well as similar approaches, like
the Random Kitchen Sinks classifier [53]. Such methods have
found application in generic and facial image classification,
human action recognition [51], [54], [55].

IV. CONCLUSIONS

In this paper, we provided an overview of approximate
methods for kernel-based learning using large-scale data sets.
We categorized the existing approaches based on the type
of approximation they exploit in three categories, i.e., meth-
ods adopting a low-rank kernel matrix assumption, methods
exploiting a reduced kernel space definition and methods
exploiting a randomized kernel space definition. We described
the basic principles of each category and provided connections
to specific methods applied in media data analysis problems.
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