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Abstract—In this paper, we propose a novel online method
for analyzing acoustic scenes from sequentially obtained sounds.
One prospective method for analyzing acoustic scenes is the use
of a generative model of acoustic topics and event sequences in
observed sounds, where the acoustic topic represents the latent
structure of acoustic events associating an acoustic scene and
acoustic events. This generative model is called an acoustic topic
model (ATM). However, the conventional ATM employs a batch
technique for estimating model parameters and cannot model
sequentially obtained acoustic event sequences. Moreover, the
number of classes of acoustic topics that lies in acoustic event
sequences needs to be predetermined before observing acoustic
events. However, the necessary number of acoustic topics for
representing acoustic scenes varies in accordance with their
contents, and this causes a mismatch between the actual number
of classes of acoustic topics and the predetermined number of
classes. In our method, the number of classes of acoustic topics
can be automatically inferred from sequentially obtained acoustic
event sequences on the basis of the online and nonparametric
Bayesian technique. The experimental results of online acoustic
scene estimation using real-life sounds indicated that the pro-
posed method performed of acoustic scene classification better
than the conventional ATM. In addition, the proposed method
produced an efficient computation performance.

I. Introduction

A lot of attention has been drawn recently to applications
for monitoring elderly people [1], security surveillance [2],
automatic classification of user activities and contexts [3], [4],
and multimedia retrieval [5], which utilize the information
obtained from various acoustic signals. There are some useful
techniques to realize these applications. One is acoustic event
detection (AED), which analyzes various types of acoustic
events (e.g., “footsteps,” “running water,” “music,”) for de-
tecting or classifying specific types of sounds [6], [7], and
another is acoustic scene analysis (ASA), which analyzes a
scene in which sounds are produced such as user activities
(e.g., “cooking,” “vacuuming,” “watching TV”) or situations
(e.g., “on the train,” “in a meeting”) [8]. In this paper, we
focus on automatic estimation of acoustic scenes, especially
user activities.

One simple approach for analyzing acoustic scenes is fo-
cused on a combination of acoustic events. For example, an
acoustic scene “cooking” is marked by a combination of acous-
tic events including “running water,” “cutting with a knife,”
and “heating a skillet.” On the basis of this idea, Heittola et al.
[9] and Guo and Li [10] proposed acoustic scene classification
methods based on the histogram of acoustic events and support
vector machine (SVM) [11]. Kim et al. [12], Lee and Ellis

[13], and Imoto et al. [14], [15] focused on the fact that the
probabilities of acoustic events depend on the acoustic scenes
and proposed generative models to represent acoustic event
sequences contained within long-term sounds. Their models
are called an acoustic topic model (ATM). In the ATM, the
relationship between acoustic scenes and acoustic events is
represented by a generative model using an acoustic topic,
which is a latent variable to control a generative probability of
acoustic events. The original ATM is a batch model that needs
to prepare many acoustic event sequences preliminarily for
analyzing them, and therefore, it suffers from the disadvantage
that sequentially obtained acoustic event sequences are difficult
to model.

Then, even though an online method of ATM can be intro-
duced with reference to [16], [17], it still needs to determine
the number of classes of acoustic topics that lies in acoustic
event sequences before observing acoustic event sequences.
Therefore, the simple online ATM causes a mismatch between
the actual number of classes of acoustic topics in obtained
acoustic event sequences and the predetermined number of
classes. This leads to modeling inappropriate relations between
acoustic scenes and events, and as a consequence, the degra-
dation in the performance of the acoustic scene analysis.

In this paper, we propose a probabilistic generative model of
acoustic event sequences and propose a parameter estimation
method that can estimate the number of classes of acoustic
topics from sequentially obtained acoustic event sequences.
Our proposed model can adaptively estimate the number of
acoustic topics in accordance with the content of each acoustic
event sequence.

The present paper is divided as follows. Section 2 contains
an overview describing the conventional and proposed genera-
tive models of acoustic event sequences. Section 3 summarizes
parameter estimation for the proposed model. In section 4, the
results from real environment experiments are discussed, and
in section 5, we conclude this paper.

II. Probabilistic GenerativeModel of
Acoustic Event Sequence

A. Conventional Acoustic Topic Model

In this paper, we define an acoustic event as a label for
representing kinds of sounds at each frame, which can be ob-
tained by an unsupervised clustering as a pre-processing. Then,
a sound clip (for example with 30 seconds) is represented as
an acoustic event sequence, which is a time series of acoustic
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events. We define an acoustic scene as a label for each acoustic
event sequence. In modeling a relationship between acoustic
scenes and acoustic event sequences, the acoustic topic model
(ATM) [12] has been proposed to model a generative process
of acoustic event sequences in an unsupervised manner. This
kind of generative model is originally proposed as the latent
Dirichlet allocation (LDA) in the area of natural language
processing [18], whereas the ATM uses it for an acoustic
event sequence. The ATM assumed that a generative process
of acoustic event sequences can be represented by a hierar-
chical generative process of acoustic topics and events, where
the acoustic topic represents the latent structure of acoustic
events that associates an acoustic scene and an acoustic event
sequence. That is, in ATM acoustic scenes are characterized
through acoustic topics indirectly.

In particular, ATM models the generative process of an
acoustic event sequence es as follows,

θs ∼ Dir(β)
ϕt = Dir(σ)
zsi (∈ T ) | θs ∼ Mult(θs)
esi (∈ M) | ϕzsi

, zsi = Mult(ϕt) (1)

where β and σ are hyperparameters of the Dirichlet dis-
tributions. The θs and ϕt are probability distributions over
an acoustic topic in s and an acoustic event in t, respec-
tively. The definitions of other variables used in this paper
are listed in Table I. The ATM models acoustic scenes by
using the predetermined number of acoustic topics (T ) for
every acoustic event sequence; however, the necessary number
of acoustic topics for representing acoustic scenes varies
in accordance with their contents. Moreover, the necessary
number and combination of acoustic topics for describing each
event sequence varies in accordance with the content of each
acoustic event sequence. In the original ATM, an appropriate
number of acoustic topics needs to be anticipated and set from
a preliminarily obtained dataset, and therefore, sequentially
obtained acoustic event sequences are difficult to model with
the appropriate number of acoustic topics.

We thus can consider an online version of ATM referring
to [17]. However, there remains a problem that it needs to set
the number of acoustic topics before observing acoustic event
sequences. This causes a mismatch between the actual number
of acoustic topics in sequentially obtained acoustic event
sequences and the predetermined number of acoustic topics.
This may result in degrading the accuracy of the acoustic scene
analysis and may cause an unnecessary calculation cost.

B. Acoustic Topic Model with Adaptively Estimating the Num-
ber of Acoustic Topics

We address the issue of the original ATM by proposing
an online acoustic topic model that can infer the appropriate
number of acoustic topics from sequentially obtained data. In
this paper, to apply ATM to the sequentially obtained data,
we preliminarily segment a continuously obtained acoustic
event sequence into multiple acoustic event sequences. Then,
it is assumed that we observe the data sequentially in this

TABLE I
Definition of variables

Symbol Definition

S Total number of acoustic event sequences
K Maximum number of acoustic topic categories

in all acoustic event sequences
T Maximum number of acoustic topic categories

in each acoustic event sequence
M Number of acoustic event categories
Nes Number of acoustic events in es
s Index of acoustic event sequences
k Class index of acoustic topics in corpus level
t Class index of acoustic topics in event sequence level
m Class index of acoustic events
i Order index of acoustic event in each event sequence
E Class of acoustic event sequences
G0 Prior of acoustic topic distribution in corpus level
Gs Acoustic topic distribution in sequence level
θk Corpus level acoustic topic atom
ηt Event sequence level acoustic topic atom
βk Weight of atom ϕk (corpus level topic distribution)
πst Weight of atom ηsi (sequence level topic distribution)
zsi Acoustic topic for acoustic event esi
esi ith acoustic event in acoustic event sequence s
ξst Multinomial variational parameter for cst
ζsi Multinomial variational parameter for zsi
λt Dirichlet variational parameter for ϕk
cst Relation indicator between corpus and acoustic

event sequence level atoms
γ, α0 Hyperparameter of beta distribution
uk, wk Parameters of beta distribution relevant to corpus

level topic distribution
ast, bst Parameters of beta distribution relevant to acoustic

event sequence level topic distribution
Dir(·) Dirichlet distribution
Mult(·) Multinomial distribution
Beta(·) Beta distribution
H Symmetric Dirichlet distribution over acoustic event

segmented acoustic event sequence unit. Thus, this segmented
acoustic event sequence is called an “acoustic event sequence”
and its index is referred by s in this paper.

In the proposed model, we introduce the hierarchical Dirich-
let process [19], [20] to ATM, which can estimate the appropri-
ate number of acoustic topics for a dataset. We call this model
nonparametric ATM (nATM). We first discuss a generative
process of acoustic event sequences on the basis of nATM in
this section, and then introduce an online parameter estimation
method for nATM in the next section.

The nATM explicitly includes a process of determining the
number of acoustic topics in a generative process of acoustic
event sequences, and therefore, the nATM can adaptively
estimate the number of acoustic topics to the dataset. In
particular, we model the generative process of the acoustic
event sequences with two stick-breaking construction pro-
cesses [21], [22] for determining the number of acoustic
topics in two levels: all-acoustic-event-sequences level (corpus
level) and each-acoustic-event-sequence level (sequence level).
This multi-level generative process enables to determine the
appropriate number of acoustic topics in both of the corpus
level and the sequence level.
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In nATM, the prior of acoustic topics that corresponds to
the corpus level acoustic topics is first generated.

β′k ∼ Beta(1, γ)
βk = β′k

∏k−1
c=1(1 − β′c)

θk ∼ H

G0 =
∑∞

k=1 βkδθk (2)

Here, θk and βk indicate the common topic “seeds” called
corpus level atoms in all acoustic event sequences and the
topic distribution for each θk. Then, topic distributions in each
acoustic event sequence are generated from the corpus level
acoustic topics as follows,

ηst ∼ G0

π′st ∼ Beta(1, α0)
πst = π′k

∏t−1
c=1(1 − π′sc)

Gs =
∑∞

k=1 πstδηst , (3)

where ηst indicates the topic “seeds” called acoustic event
sequence level atoms in each acoustic event sequence and
πst denotes the topic distribution for each ηst. Two stick-
breaking construction processes enable modeling of acoustic
event sequences with numbers and types of acoustic topics
tailored to each acoustic event sequence. After that, topic
distributions in each acoustic event sequence are generated
from the corpus level acoustic topics as follows.

cst ∼ Beta(β)
zsi ∼ Beta(πs)
ϕsi = ηszsi = θcszsi

esi ∼ Beta(ϕsi), (4)

where we introduce the relation indicator cst for mapping
corpus level atoms to acoustic event sequence level atoms.
Finally, acoustic topics and events are generated from the topic
and event distributions.

III. Parameter EstimationMethod for Online
Nonparametric ATM

We next describe a model parameter estimation method
of nATM based on the variational inference. A parameter
estimation for batch nATM is first derived, and then a method
for an online algorithm is provided.

A. Parameter Estimation for Batch nATM
To estimate model parameters of batch nATM, we need to

find parameters that maximize p(β′,π′, c, z,ϕ|E). In a vari-
ational inference of nATM, it is intractable to infer model
parameters of nATM analytically. Therefore, we introduce a
variational distribution q(β′,π′, c, z,ϕ) and approximate this
to true posterior distributions of model parameters. For this
variational distribution, we apply the following mean field
approximation to q(β′,π′, c, z,ϕ).

q(β′,π′, c, z,ϕ) = q(β′) q(π′) q(c) q(z) q(ϕ)

=

K∏
k=1

q(β′k |uk, wk) ·
S∏

s=1

T∏
t=1

q(π′st |ast, bst)

·
S∏

s=1

T∏
t=1

q(cst |ξst) ·
S∏

s=1

Ns∏
i=1

q(zsi|ζsi) ·
K∏

k=1

q(ϕk |λk) (5)

Then, we consider the marginal log likelihood for obtained
acoustic event sequences log p(E|γ, α0, υ). According to the
variational inference [23], we can estimate appropriate pos-
terior distributions by maximizing a lower boundary obtained
by applying Jensen’s inequality to log p(E|γ, α0, υ), and finally,
we can obtain the following corpus level and acoustic event
sequence level parameter updates.

Acoustic event sequence level parameter updates:

ast = 1 +
∑Ns

i=1 ζsit

bst = α0 +
∑Ns

i=1
∑T

d=t+1 ζsid

ξstk ∝ exp
(∑Ns

i=1 ζsitEq[log p(esi|ϕk)] + Eq[log βk]
)

ζsik ∝ exp
(∑K

k=1 ξstkEq[log p(esi|ϕk)] + Eq[log πst]
)

(6)

Corpus level parameter updates:

uk = 1 +
∑S

s=1
∑T

t=1 ξstk

wk = γ +
∑S

s=1
∑T

t=1
∑K

c=k+1 ξstc

λke = υ +
∑S

s=1
∑T

t=1 ξstk(
∑Ns

i=1 ζsitI[esi = m]) (7)

where I[esi = m] becomes 1 if esi = m and 0 otherwise. Corpus
level and acoustic event sequence level updates are iteratively
calculated for the batch nATM parameter estimation until a
convergence condition is satisfied. A more detailed discussion
of the parameter estimation of an equivalent generative model
to nATM can be found in the work of Wang et al. [22].

B. Parameter Estimation for Online nATM

We then propose an online parameter estimation method for
nATM. In the online parameter estimation, we need to update
model parameters without storing all acoustic event sequences,
and therefore, appropriate posterior distributions are estimated
by sequentially maximizing the contribution of each acoustic
event sequence to

∑S
s=1 log p(es|γ, α0, υ) instead of maximizing

log p(E|γ, α0, υ) directly. To maximize
∑S

s=1 log p(es|γ, α0, υ),
this paper introduces a stochastic optimization based on the
natural gradient of the variational distribution [17], [24], [25],
which allows a fast and a tractable online algorithm. Specif-
ically, given a new acoustic event sequence, acoustic event
level parameters are first updated with Eq. (6) iteratively while
keeping the corpus level parameters fixed. Then, the corpus
level parameters are updated with the following updates,
which corresponds to the stochastic optimization of the natural
gradient.

u(h)
k = (1 − ρ(h))u(h−1)

k + ρ(h)(1 +
S∑

s=1

T∑
t=1

ξstk)

w(h)
k = (1 − ρ(h))w(h−1)

k + ρ(h)(γ +
S∑

s=1

T∑
t=1

K∑
c=k+1

ξstc)
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TABLE II
Experimental conditions

Sampling rate / quantization 16 kHz / 16 bits
Frame size / shift 512 / 256
Acoustic event sequence size 16-s (including 1,000 events)
Hyperparameter γ / α0 3.3333 / 0.1
Time shift parameter τ0 2.0
Forgetting factor κ 0.6

λ(h)
ke = (1 − ρ(h))λ(h−1)

ke + ρ(h)(υ +
S∑

s=1

T∑
t=1

ξstk(
Ns∑
i=1

ζsitI[esi = m])) (8)

where the updating weight is controlled by the repeated count
h, time shift parameter τ0, and forgetting factor κ.

IV. Experiments

A. Experimental Conditions

We evaluated how efficiently and effectively online nATM
can model acoustic scenes through the perplexity, compu-
tation cost, and classification accuracy of acoustic scenes
compared with nATM and other conventional models. In
this experiment, we used 11,105 real environment acoustic
signals that include nine categories of user activities: “chat-
ting,” “cooking,” “eating dinner,” “operating PC,” “reading
a newspaper,” “vacuuming,” “walking,” “washing dishes,”
and “watching TV.” Of these acoustic signals, 9,802 were
used for parameter estimation and 1,303 for evaluation. For
each acoustic signal, 12-dimensional Mel-Frequency Cepstral
Coefficients (MFCCs) were calculated from every segmented
acoustic signal with 50% overlap, and then acoustic events
were recognized by using a Gaussian Mixture Model (GMM)
with 128 acoustic event classes frame by frame [14]. The other
experimental conditions are listed in Table II.

B. Perplexity and Computation Time

In the first experiment, we evaluated the generalization
performance using perplexity. Perplexity evaluates how well
a model predicts a dataset, and a lower perplexity indicates a
better generalization performance. In particular, the perplexity
for the proposed method was calculated as follows.

Perplexity(S ) = exp
{
−
∑S

s=1 log p(es)∑S
s=1 Ns

}
(9)

We also compared how efficiently the proposed method models
acoustic event sequences by using the computation time.
The times for modeling 9,802 acoustic event sequences were
measured by using a PC with an Intel Core i7-870 (2.93GHz)
CPU. In this experiment, we compared four algorithms: online
nATM (proposed), online ATM based on VB (Online ATM-
VB), batch ATM based on VB (Batch ATM-VB), and batch
ATM based on collapsed Gibbs sampling (Batch ATM-CGS)
[26], [27].

Figure 1 shows perplexities for the calculation time in each
model. For the conventional models, we calculated perplexities
and computation times with T = 10 − 100. These results
indicate that the proposed model clearly came out on top with
its very good perplexity value (4.69) and it has advantages in
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Fig. 2. Classification accuracy and calculation time for online nATM and
conventional models

terms of the generalization performance than the batch models.
The reason that the proposed model achieved a lower perplex-
ity than the online ATM-VB is that it can estimate parameters
while adjusting the number of acoustic topics necessary for
representing acoustic event sequences. Moreover, the results
also indicate that the proposed model needs less time than
the batch models because of same reason it achieved the
lower perplexity value. Overall, the proposed model achieves
a balance between good generalization performance and less
calculation time.

C. Classification Accuracy

The second experiment was conducted to evaluate how well
the proposed online nATM models the relationship correctly
between acoustic event sequences and their corresponding
user activities through acoustic topics. For this experiment,
we manually labeled acoustic event sequences with acoustic
scenes as the ground truth. After the estimation of model
parameters, the acoustic scene classification was conducted by
using a multi-class support vector machine (SVM), in which
acoustic topic distributions are used as the feature of acoustic
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scenes in the same manner as [12]. We thus calculated the
estimation accuracy of acoustic event sequences to a user
activity as follows.

Accuracy(a) =
# sequences correctly classified

# sequences classified to acoustic scene a
(10)

Figure 2 plots the average classification accuracy for the
calculation time in each model. The proposed method achieved
higher accuracy classification performance (73.80%) than the
other VB based ATMs and comparable performance to the
batch CGS based ATM, which a prominent method for es-
timating model parameters. The further investigation of the
results shows that there is the appropriate number of acoustic
topics for a dataset. If we select the inappropriate number of
acoustic topics in the conventional method, the classification
performance degrades or unnecessary calculation cost is re-
quired. On the other hand, the proposed method outperforms
conventional models without predetermining the number of
acoustic topics.

V. Conclusion
A conventional acoustic topic model cannot model sequen-

tially obtained acoustic event sequences and may require
unnecessary calculation time. Moreover, the number of classes
of acoustic scenes in acoustic event sequences needs to
be predetermined before obtaining them, and this causes a
mismatch between the actual number of classes of acoustic
scenes and the predetermined number of classes. In this paper,
we proposed an online acoustic topic model that can infer
the number of classes of acoustic scenes from sequentially
obtained acoustic event sequences. In the proposed model, a
generative process of an acoustic event sequence is modeled
with the hierarchical Dirichlet process to select the appropriate
number of acoustic topics from a dataset automatically and
estimate their parameters with a VB-based online parameter
estimation method. Acoustic scene estimation experiments
with real-life sounds indicated that the proposed method
produced a more efficient computation and higher acoustic
scene classification performance than the conventional VB-
based ATMs.
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