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Abstract—Accommodating multiple nonlinearities in a modu-
lar fashion and with no use of delay elements is a relevant un-
solved problem in the literature on Wave Digital (WD) networks.
In this work we present a method for adapting instantaneous
NonLinear (NL) bipoles characterized by monotonic increasing
curves. The method relies on the fact that the characteristic of a
NL bipole can be described by a line, which dynamically varies
its slope and its intercept according to the actual operating point.
This fact allows us to model a NL bipole as a linear real voltage
generator with time-varying parameters. Dynamic adaptation
makes possible to accommodate multiple nonlinearities in the
same WD network, ensuring the absence of delay-free loops.
We will show that diodes can be effectively modeled using the
presented approach. As an example of application of our method,
we present an implementation of a diode-based audio limiter.

I. INTRODUCTION

Wave Digital Filters (WDFs) [1] are particularly suitable
for Virtual Analog (VA) modeling [2] as they can be eas-
ily designed as digital port-wise representations of analog
reference circuits. The circuit elements are characterized by
input/ouput functions and the topological connections between
such elements are described by scattering matrices, called
adaptors. WDFs possess excellent properties such as stability,
pseudopassivity and modularity, [1] which are highly desirable
in VA applications. Moreover, WDFs theory allows us to
easily insert one Non Linear Element (NLE) [3]–[5] in a WD
Structure (WDS). However modeling multiple nonlinearities in
the same WD network is not a straightforward task. In fact, if
proper adaptation conditions are not imposed, delay free loops
arise, resulting in instantaneous signal dependencies, which
prevent computability. Some partial solutions to this problem
are present in the literature. The simplest practical remedy is
adding delay elements [6], [7] for breaking the loops; although
this trick may lead to instabilities. A safer possible approach
is to condensate all the nonlinearities in a single multi-port
NLE, as done in [8]–[10], where some WD implementations of
diode networks have been presented. However, this approach
may lead to complicated systems of equations to solve, which
cannot easily be reduced in explicit form. Another method [11]
consists of grouping many NLEs at the root of the WDS and
using the K method for jointly computing the corresponding
scattering vector. Modularity-preserving approaches exist in
the literature [12], and they are based on artificial delays and
iterative methods. However, in general, there is not a general

method, which makes no use of delay elements and modularly
solves many separated nonlinearities in the same WD network.

In this work we propose a technique for the adaptation
of generic bipoles characterized by NL monotonic increasing
curves and always positive derivative. Our idea is describing
one-port NLEs as linear real voltage generators with time-
varying parameters. We will show this approach turns out
to be effective dealing with low and mid-frequency audio
signals, while it needs improvements for dealing with high-
frequency signals. However, we believe these results might be
a good starting point toward the adaptation of more complex
nonlinearities and the fully modular modeling of nonlinear
WD networks. Instead of using voltage waves, which are more
spread in the literature on WDFs [1], we will use rms-power-
normalized waves (shortly power waves), which are known to
be more appropriate for modeling time-varying structures [13],
[14]. In Section II we briefly revise the principal components
of WD networks and we provide an explicit power wave
mapping for the diode, which never appeared in the literature.
In Section III we provide a general method for adapting
an instantaneous NL bipole. In Section IV we apply the
described method to the Shockley diode model. Section V
presents an implementation of an audio limiter as an example
of application of our results. Section VI concludes this paper.

II. POWER NORMALIZED WD NETWORKS

In the Kirchhoff (K) domain, each port of the reference
analog circuit is identified by two variables, namely port
voltage V and port current I . Conversely, in the WD domain a
port is characterized by an incident wave a, a reflected wave b
and a reference port impedance (or simply “port impedance”)
Z, which is a free parameter. Assuming dealing with real
power waves and real positive impedances, according to [15],
the K-WD transformation can be written as

a =
V + ZI

2
√
Z

b =
V − ZI

2
√
Z

(1)

and the corresponding inverse map is

V = (a+ b)
√
Z I = (a− b)/

√
Z . (2)

In the light of this wave definition (1), (2), in this section
we describe the most spread WD linear elements and the
corresponding adaptation conditions. Moreover we introduce
an explicit wave equation based on the Lambert function which
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characterizes a diode. Finally we revise the scattering matrices
usable for implementing the series and parallel adaptors.

A. Linear Resistor

A linear resistor R is characterized by the equation V = RI .
According to (2), we can write the wave mapping as

b =
R− Z
R+ Z

a . (3)

Therefore the resistor may be adapted setting Z = R, so the
reflected wave is simply computed as b = 0.

B. Real Voltage and Current Generators

A real voltage generator in the K domain can be described
by the equation

V = RI + Vg , (4)

where Vg is the voltage source and R is the associated non-
zero series resistance. According to (2), we can write the wave
mapping as

b =
Vg
√
Z + (R− Z)a

R+ Z
. (5)

Therefore the real voltage generator is adapted if we set Z =
R, so the reflected wave is computed as b = Vg/(2

√
Z).

It is worth noticing that (3) may be considered as a particular
case of (5) with Vg = 0. Analogously, the K equation

I = V/R+ Ig , (6)

describing a real current source with parallel resistance R, can
be easily fitted into (4) setting Vg = −RIg .

Ig R

+
− Vg

R

Ig R

+
− Vg

R

Fig. 1. Real Voltage and Current Generators.

C. Capacitor and Inductor

The power wave mapping of a capacitor, described by
the differential equation I = CdV /dt, where C is the
capacitance and d/dt is the time-derivative operator, can be
derived passing in the Laplace domain and then using the
bilinear transform for switching into the Z-domain [14]. Under
the proper adaptation condition, Z = 1/(2FsC), where Fs is
the sampling frequency, a power-normalized WD capacitor is
implemented using a simple delay element z−1. Analogously,
an inductor, described by the equation V = LdI/dt, where
L is the inductance, is adapted setting Z = 2FsL and its
implementation turns out to be a delay element with the minus
sign −z−1.

D. Nonlinear Diode

If we describe a diode using the Shockley model the
relationship between current I and voltage V is

I = Is

(
eV/(ηVt) − 1

)
(7)

where e is Napier’s number, Vt is the thermal voltage, η is the
ideality factor and Is is the saturation current of the diode.
Using the approach based on the Lambert Function W [16],
developed in the voltage WD domain firstly in [17], [18] and
then extensively in [10], we derive the wave mapping

b = a− ηVt√
Z
W

(
ZIs
ηVt

e(2a
√
Z+ZIs)/(ηVt)

)
+
√
ZIs . (8)

It is worth noticing that, using classical WDFs theory, a diode
characterized by the nonlinear eq. (8) cannot be adapted.

E. Series and Parallel Adaptors

As well explained in [14], we can express a WD M -
port series or parallel junction in matrix form as b = Sa.
a = [a1, . . . , aM ]T and b = [b1, . . . , bM ]T are the trans-
posed vectors of the incident and reflected waves respectively
(denoting the superscript T transposition), while S is an
orthogonal scattering matrix, whose cells are functions of the
corresponding port impedances, named Z1, . . . , ZM .

In the case of a series junction, S can be written as

S = EM −
√
αs
√
αs

T
, αs =

2∑M
j=1 Zj

[Z1, . . . , ZM ]T ,

where EM is the M ×M identity matrix. We can derive a
series adaptor from the described series junction, making the
i-th port reflection free, if we impose the adaptation condition
Zi =

∑M
j=1,j 6=i Zj .

Conversely, for a parallel junction we have

S = −EM+
√
αp
√
αp

T , αp =
2∑M

j=1
1
Zj

[
1

Z1
, . . . ,

1

ZM

]T
.

Also in this case we can derive a parallel adaptor, making the
the i-th port reflection free, if we set Zi = 1/

∑M
j=1,j 6=i Zj

−1.

III. NL BIPOLE DYNAMIC ADAPTATION

In this section we describe a strategy for dynamically
updating the port impedance of a NL instantaneous bipole in
order to ensure adaptation at each time step. We discuss both
the case in which the port voltage V is a NL function of the
port current I and the case in which V is a NL function of
I . Then we show that, since the port impedance changes in
the middle of each iteration n, we need to properly weight the
incident and the reflected wave signals of the NL bipole.
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A. Port Impedance Update

Let us consider a generic active or resistive bipole char-
acterized by an instantaneous NL function FV which relates
the port current I to the port voltage V , so that we can write
V = FV (I). Let us assume the derivative of FV w.r.t. I to be
always strictly positive, i.e.

dFV (I)

dI
> 0 for each I.

Then let us refer to an instantaneous actual value of I as I0.
It follows that I0 is related to an unique port voltage value
V0, defined as V0 = FV (I0). We will refer to the point P0

with coordinates (I0, V0) as the operating point on FV . Let us
notice that the defined operating point P0 on the NL FV curve
is in common with the tangent straight line having equation

V0 = q + λI0 , (9)

with
λ =

dFV (I0)

dI
, q = V0 − λI0 . (10)

It is worth noticing that eq. (9) is in the same form of eq. (4). It
follows that we can model the bipole characterized by the NL
function FV at the operating point P0 with a voltage generator
having Vg = q and R = λ.

In the light of this we want to find a strategy for dynamically
adapting a WD NL bipole, treating it as a time-variant WD real
generator. In other words we need to find the actual operating
point P0 at each iteration n, in order to derive the proper
parameters qn and λn using (10), where the subscript n refers
to the n-th iteration. Once we have derived qn and λn, we have
to set Vgn = qn and Zn = λn, in order to ensure adaptation
for the iteration n+1. As a matter of fact, at the beginning of
each iteration n, we dispose only of two informations at the
NL bipole port: the actual value of the incident wave an and
the old value of the port impedance Zn−1. For this reason we
need a NL function HI (a, Z), such that

I0n = HI (an, Zn−1) . (11)

Found I0n, we easily derive also V0n, using V0n = FV (I0n).
Now we have all the needed variables for computing λn and
qn (10).

In some cases it is easier to express the NL bipole port
current I as a NL function FI of the port voltage V . Let us
assume

dFI(V )

dV
> 0 for each V.

It follows the coordinates of the operating point P0 on FI are
related by the equation I0 = FI(V0). The operating point P0

on the FI curve is in common with the tangent straight line
having equation

I0 = q + λV0 , (12)

with
λ =

dFI(V0)

dV
, q = I0 − λV0 . (13)

We notice that eq. (12) is in the same form of eq. (6). It
follows that we can model the bipole characterized by the NL

function FI at the operating point P0 with a current source
having Ig = q and R = 1/λ. As already pointed out in
Subsection II-B, a current source may be implemented as a
voltage generator if we properly set its parameters. In this
case we would have Vg = −q/λ and R = 1/λ. As happens
dealing with current-dependent NL functions, at each iteration
n, we need to compute the suitable parameters λn and qn,
in order to ensure adaptation for the iteration n + 1, setting
Zn = 1/λn. For finding the actual operating point P0, we
need a NL function HV (a, Z), such that

V0n = HV (an, Zn−1) . (14)

Found V0n, we easily derive also I0n, using I0n = FI(V0n),
and the parameters λn and qn through (13).

As an example of NL bipole characteristic, Fig. 2 shows
a diode curve with a tangent straight line passing through
a generic operating point P0. The equations for applying
dynamic adaptation to a diode will be described in Section IV.
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Fig. 2. Diode curve and its tangent line passing through the operating point
P0 = (V0, I0) denoted by a red dot. The black dot has coordinates V = 0
and I = q. The slope of the black straight line is λ.

B. Wave Signals Weights Derivation

The NL bipole port impedance update, from Zn−1 to Zn,
described in Subsection III-A, occurs in the middle of each
iteration, so it is out of phase w.r.t. the other variables updates
taking place at the beginning or the end of the loop. It follows
that, in the same iteration, some computations are performed
using Zn−1 and some others using Zn. This asynchrony char-
acterizing the port impedance update prevent us considering
our model as a classical time-varying power-normalized WD
network [13], [14]. As a matter of fact, when the incident wave
arrives at the NL bipole port, we change its port impedance.
It follows that, in the n-th iteration, the port impedance Z2 of
the NL bipole is different w.r.t. the port impedance Z1 of the
adaptor to which the NL bipole is connected. At iteration n+1,
Z1 is updated with the old value of Z2, while Z2 changes again
and so on. This discrepancy between Z1 and Z2 is not expected
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Fig. 3. Wave Weights in Dynamic Adaptation.

in classical power-normalized WDSs. In order to describe this
phenomenon, let us call the port variables from the adaptor
side with the subscript 1 (V1, I1, a1 and b1), while the port
variables from the NL bipole side with the subscript 2 (V2, I2,
a2 and b2). If Z1 and Z2 are different in the same iteration n,
nobody assures us that the conditions

V1 = V2 I1 = −I2 (15)

are true. In traditional time-varying power-normalized WDSs,
conditions (15) are always automatically satisfied and this fact
is highly desirable as V1, V2, I1 and I2 refer all to the same
actual port. In order to cope with this problem, we introduce
two weights g1 and g2, which filter the reflected waves b1
and b2, as shown in Fig. 3. According to Fig. 3 we can write
a2 = g1b1 and a1 = g2b2. Let us assume for now to know
a priori both Z1 and Z2 at iteration n. Applying the WD-K
transformation (2), we can express the conditions (15) in the
WD domain through the following system of equations{

(g2b2 + b1)
√
Z1 = (g1b1 + b2)

√
Z2

(g2b2 − b1)
√
Z2 = (b2 − g1b1)

√
Z1 .

(16)

Solving the system (16) for g1 and g2, we obtain

g1 =
b2 (Z1 − Z2)

b1 (Z1 + Z2)
+

2
√
Z1

√
Z2

Z1 + Z2
, (17)

g2 =
b1 (Z2 − Z1)

b2 (Z1 + Z2)
+

2
√
Z1

√
Z2

Z1 + Z2
. (18)

We notice from (17) and (18) that if Z1 = Z2, g1 = g2 = 1
holds, as in traditional power-normalized WDSs. Therefore,
in general, for ensuring conditions (15) to hold, it would
be sufficient to set (17) and (18), avoiding to impose such
constraints when b1 = 0 or b2 = 0. However, if we remove the
assumption of knowing a priori both Z1 and Z2, according to
what usually happens in practical applications, some problems
arise. In fact, while satisfying the constraint (18) is easy,
imposing the constraint (17) would require knowing the value
of Z2 before actually computing it. It follows g1 can only be
estimated and we will call such estimate ĝ1.

Nevertheless, in practice, dealing with low frequency input
signals and sufficiently high sampling frequencies Fs, the old
value of g1 turns out to be a good estimate ĝ1. So in these cases
ĝ1 could be updated after Z2 has been computed. Conversely,
dealing with high frequency signals, the parameter λ might
change so fast that the old value of Z2 turns out to be too
different from the right one. For this reason more advanced
prediction techniques are under study.

IV. DIODE DYNAMIC ADAPTATION

In this Section, as an example of application of the method
described in Section III, we derive the equations needed for
applying dynamic adaptation to a generic NL diode charac-
terized by eq. (7). Eq. (7) expresses I as a function of V , so
we search a NL function of the type (14). Therefore, using
the Lambert function W [10] and exploiting hybrid relations
among K and WD port variables easily derived combining (1)
and (2), we obtain:

V = 2a
√
Z+ZIs−ηVtW

(
ZIs
ηVt

e(2a
√
Z+ZIs)/(ηVt)

)
. (19)

We need also the derivative of (7) w.r.t. V , which is

dFI(V )

dV
=
Ise

V/(ηVt)

ηVt
. (20)

As dFI(V )/dV is dangerously near to zero at many operating
points, we add it a small positive bias ε, in order to prevent
numerical problems. Now we have all the information we
need to find the coordinates of a generic operating point P0

through (19) and (7). Consequently we are able to compute
the parameters λn and qn through (13) at each iteration n and
to perform dynamic adaptation, setting Zn = 1/λn.

V. DIODE-BASED AUDIO LIMITER

In this Section we propose an implementation of the audio
limiter depicted in Fig. 4. As shown in Fig. 5 the corresponding
WD network presents two nonlinearities (i.e. diodes) which are
accommodated separately, preserving modularity as in linear
WDSs. Diode D1 is adapted “from the adaptor side” as in
traditional WD networks, while diode D2 is adapted using
dynamic adaptation. As the two diodes are in antiparallel, we
connected a two-port series adaptor to D1 in order to ensure
the orientations of D1 and D2 to be opposite.

The used implementation strategy is analogous to the one
presented in [19], where a scanning of a treelike topological
representation of the reference model (connection tree) is
performed. In particular we have modeled the WDS in Fig. 5
as a Binary Connection Tree (BCT) [19], using series and
parallel adaptors with up to 3 ports. The main difference w.r.t.
the algorithm presented in [19] is that, thanks to dynamic
adaptation, we can treat the NLE D2 as a linear element (i.e.
a leaf of the BCT). Conversely we accommodate D1 as in
classical NL WDF theory. Therefore D1, characterized by the
wave mapping (8), turns out to be the root of the BCT .

Vin

Rs

Rin

D1 D2 Rout Vout

Vin

Rs

Rin

D1 D2 Rout Vout

Fig. 4. Audio Limiter Reference Circuit.
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RinVin
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D1

D2D2

Fig. 5. Wave Digital Schema of the Audio Limiter in Fig. 4. Diode D2 is
adapted through Dynamic Adaptation.

As far as initial conditions are concerned, we assume all
the initial port voltages and port currents to be zero. Therefore
we initialize the port impedance of D2 to Z = ηVt/Is, as the
starting operating point has coordinates I0 = 0 and V0 = 0.
D1 and D2 are identical and the values of the Shockley model
(7) parameters are: η = 1, Vt = 0.025 volts and Is = 10−12

amperes. The input signal Vin is provided by a real sinusoidal
generator and it can be written as Vin (n) = ρ sin (2πf0n/Fs),
where n indicates the n-th sample, ρ is the gain of the input
signal, f0 is its fundamental frequency and Fs is the sampling
frequency. In the presented simulation we have ρ = 1 volt,
f0 = 300 Hz and Fs = 48000 Hz. The series resistance of
the generator is Rs = 1 Ω, while Rin = 3 kΩ and Rout =
50 kΩ. The weight ĝ1 is computed, after the update of the
port impedance, as discussed in Subsection III-B. Moreover,
as mentioned in Section IV, we add a small bias ε = 0.0005
to the derivative estimate (20) in order to prevent numerical
problems. Fig. 6 shows the trend of the output signal Vout,
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Fig. 6. Vout voltage detected across Rout. WD implementation versus SPICE
result.

comparing the results of the WD implementation and SPICE.
We notice that, even though the two results are quite similar,
they do not coincide for two main reasons. The first reason is
the weight estimation error p = g1 − ĝ1 and the second is the
error due to the bias ε.

VI. CONCLUSION AND FUTURE WORK

In this paper we have introduced the concept of dynamic
adaptation of NL bipoles in WD networks. We have shown it

is an effective method for accommodating multiple one-port
NLEs in WDSs. The method works well with low-frequency
input signals and reasonably high sampling frequencies, while
it needs some improvements for high-frequency input signals.
We are searching smarter prediction techniques in order to
more effectively estimate the weight g1.

We hope the presented results be the first step toward the
formalization of new methods for adapting more complex
nonlinearities.
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time audio transformer emulation for virtual tube amplifiers,” EURASIP
J. on Advances in Signal Process., Jan. 2011.

[8] A. Bernardini, K. J. Werner, A. Sarti, and J. O. Smith, “Modeling a
class of multi-port nonlinearities in wave digital structures,” in Proc.
European Signal Process. Conf. (EUSIPCO), Nice, France, Aug. 31 –
Sept. 4 2015, pp. 669–673.

[9] ——, “Multi-port nonlinearities in wave digital structures,” in Proc.
IEEE Int. Symp. Signals Circuits Syst. (ISSCS 2015), Iasi, Romania,
July 9–10 2015.

[10] ——, “Modeling nonlinear wave digital elements using the lambert
function,” accepted for publication in IEEE Trans. Circuits Syst. I, Reg.
Papers.

[11] K. J. Werner, V. Nangia, J. O. Smith, and J. S. Abel, “Resolving wave
digital filters with multiple/multiport nonlinearities,” in Proc. 18th Conf.
Digital Audio Effects (DAFx-15), Trondheim, Norway, Nov. 30 – Dec.
3 2015.

[12] T. Schwerdtfeger and A. Kummert, “Newton’s method for modularity-
preserving multidimensional wave digital filters,” in IEEE 9th Int.
Workshop on Multidimensional (nD) Systems (nDS), Vila Real, Portugal,
Sept. 7–9 2015, pp. 1–6.

[13] J. O. Smith, “Elimination of limit cycles and overflow oscillations
in time-varying lattice and ladder digital filters,” Music Applications
of Digital Waveguides, vol. Technical Report STAN-M-39, CCRMA,
Department of Music, Stanford University, p. 4778, 1987.

[14] S. Bilbao, Wave and Scattering Methods for Numerical Simulation,
1st ed., J. W. . Sons, Ed., New York, July 2004.

[15] K. Kurokawa, “Power waves and the scattering matrix,” IEEE Trans.
Microwave Theory and Tech., vol. MTT–13, pp. 194–202, Mar. 1965.

[16] R. Corless, G. Gonnet, D. Hare, D. Jeffrey, and D. Knuth, “On the
Lambert W function,” Advances in Computational Math., vol. 5, pp.
329–359, Dec. 1996.

[17] R. C. D. Paiva, S. D’Angelo, J. Pakarinen, and V. Välimäki, “Emulation
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