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Abstract—Compressed Sensing (CS) has been successfully ap-
plied in a number of imaging systems since it can fundamentally
increase frame rates and/or the resolution. In this paper, we
apply CS to 3-D surface acquisition using Sheet-of-Light (SOL)
scanning. The application of CS could potentially increase the
speed of the measurement and/or enhance scan resolution with
fewer measurements. To analyze the potential performance of a
CS-SOL system, we formulate the estimation of the height profile
of a target object as a compressive parameter estimation problem
and investigate the achievable estimation accuracy in the presence
of noise. In the context of compressed sensing, measurement
models with AWGN are typically analyzed. However, in imaging
applications there are multiple noise sources giving rise to
different statistical noise models in which Poisson noise can be
the dominating noise source. This is particularly true for photon-
counting detectors that are used in low light settings. Therefore,
in this paper we focus on the compressive parameter estimation
problem in presence of Poisson distributed photon noise. The
achievable estimation accuracy in obtaining height profiles from
compressed observations is systematically analyzed with the help
of the Cramer-Rao Lower Bound (CRLB). This analysis allows
us to compare different CS measurement strategies and quantify
the parameter estimation accuracy as a function of system
parameters such as the compression ratio, exposure time, image
size, etc.

I. INTRODUCTION

Compressive Sensing (CS) improves the efficiency of signal

measurements compared to conventional Nyquist sampling

by combining the measurement and compression stages [1].

CS establishes that it is possible to sample a signal below

its mandated Nyquist rate and still recover it completely,

given that the signal has an underlying structure [2]. The

applications of CS have been identified in medical imaging,

distributed sensor networks, radar imaging, cognitive radio

and parameter estimation problems [3], among others. The

reduction in the required number of measurements can lead

to faster acquisition of measurements and/or cheaper sensors

without significant loss in reconstruction quality.

Sheet-of-Light (SOL) surface scanning is used in a wide

range of applications such as quality control in produc-

tion/assembly lines [4], [5], robotic vision and navigation [6],

underwater scanning [7], terrestrial scanning [8], and water

level profile estimation [9]. It is a technology that could

benefit from CS implementations in overcoming its speed and

resolution bottlenecks. The laser intensity image recorded in
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SOL scanners is inherently sparse and it also has a sparse

representation in a dictionary which can be derived from the

incident laser intensity spread function. The reduction in the

number of sensor readouts due to certain CS implementations

like coded aperture sensors [10] or CMOS imagers [11] (see

also [12] and references therein) could help in obtaining higher

frame rates and/or a higher resolution in the scanning process.

In this paper, we discuss how CS can be applied to SOL. We

show that the acquisition of the height profile from compressed

measurements can be modeled as a compressive parameter

estimation problem. We analyze the achievable accuracy in the

presence of noise using Cramer-Rao Lower Bounds (CRLBs).

In particular, we focus on Poisson noise which occurs in image

sensors (particularly in low-light conditions) and is much less

investigated than the more common additive white Gaussian

noise (AWGN). The derived CRLBs for Poisson noise allow

us to compare alternative compressive measurement strategies

and to study the impact of system parameters on the height

profile estimation quality.

This paper is structured as follows. In Section II we intro-

duce the data model and the underlying parameter estimation

problem. Section III introduces the Poisson measurement

model and its implications on the compressive measurement.

The CRLBs are derived and analyzed in Section IV before

drawing conclusions in Section V.

II. DATA MODEL AND PROBLEM FORMULATION

A. SOL measurement setup and data model

The experimental setup in a sheet-of-light laser scanner is

shown in Fig.

In essence, every column of the image contains a sampled,

shifted version of the original laser intensity shape where the

shift depends on the height of the object’s surface and is

the value of interest. Hence, in the absence of deterministic

distortions due to object height variations (i.e., considering that

we sense a relatively smooth object that does not distort the

shape of the intensity spread captured), the measured discrete

intensity spread can be considered translation-invariant [13].

Therefore, a manifold model can be considered for compact

representation of the captured laser intensity [14].

Considering that a cross section of the incident laser line has

an intensity spread G(t), where t is position, we represent the

N samples from a shifted version of the function G(t−µ) at

the points t = 0, 1, . . . , N − 1 by the vector g(µ) ∈ R
N
+ . The
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Fig. 1. Scene of sheet-of-light laser scanning

Fig. 2. A laser projection scene recorded by the sensor

image captured by the sensors, S(c,µ) ∈ R
N×L
+ , consists

of the sampled intensity spread function with varying shifts

depending on the object height at the point where the laser

is projected. Without considering any distortions, the image

obtained can be written as

S(c,µ) = [c1 g(µ1) c2 g(µ2) . . . cL g(µL)]

= [s(c1, µ1) s(c2, µ2) . . . s(cL, µL)] (1)

where µ = [µ1 µ2 . . . µL]
T are the translation parameters

(laser peak positions) to be estimated. The varying amplitude

parameters c = [c1 c2 . . . cL]
T are partly due to height varia-

tions in the object scanned and they need not be estimated. The

vector g(µ), for various values of the parameter µ, traces a 1-

D manifold Γg = {g(µ) : µ ∈ [0, N − 1]} ⊂ R
N . In practice,

the image sensor is positioned in such a way that the laser

line in the image captured is well within the image periphery

and hence, the intensity profile is captured completely. Hence,

only a subset of the possible parameter values are practically

viable.

It is obvious from ( that the estimation of the parameters

µ can be carried out for each column separately since each

parameter µℓ influences only the measurements in the same

column sℓ. This is advantageous since the L separate param-

eter estimation problems can be solved in parallel and since

each of them is equivalent to a simple peak finding problem.

For the latter, there exist numerous efficient methods, e.g.,

Center of Gravity, Gaussian Approximation, Parabolic Fitting,

cf. [15] for a survey.

B. Application of CS to SOL

The sparsity of the observed image as well as its manifold

representation introduced in ( suggests that the measurements

can be significantly compressed without substantial loss of

information. In the absence of noise, a set of compressive

measurements of an image can be written as

y = Φ vec{S(c,µ)}. (2)

CS-based imaging systems typically advocate measurements

according to ( where Φ is a full matrix, which implies

mixing of pixels from all over the image in order to make

every measurement as informative as possible [12]. Applying

( to SOL would destroy the separability of the parameter

estimation problems per column as explained in Section

The capability of obtaining the two modes of measurements

differs according to the sensor we are trying to implement. The

digital micromirror array patterns in the single pixel camera

[16] can be configured to obtain measurements in either the

ICM or MCM mode. The coded aperture CS sensors [10], on

the other hand, can only measure the image as a whole and

cannot measure each column independently.

III. POISSON COMPRESSED SENSING IN SHEET-OF-LIGHT

LASER SCANNING

A. Poisson noise in image sensors

In any modern image sensors, we have to consider a variety

of noise sources. While some of them (such as, amplifier noise,

KTC noise, and on-chip electronic noise) give rise to additive

white Gaussian noise (AWGN), there are many others that

are best described by Poisson random processes, e.g., photon

noise, quantization noise and thermal noise [17]. In this paper,

we focus on Poisson noise, for two reasons. Firstly, while

AWGN measurement models in CS are well investigated,

Poisson noise is rarely discussed in the state of the art. This

may be due to the fact that among the many applications of

CS, imaging is the one of the very few where Poisson noise is

relevant. Moreover, even in imaging this fact is often ignored

(notable exceptions include [18], [19]). Secondly, AWGN

distortions can be contained using proper electronic design

as mentioned in [17] whereas Poisson distortions in low-

light environments (originating from photon counting noise or

scattering) are inevitable. Note that in many setups, to record

only the laser light in the camera, analog filters are used in

front of the camera aperture or the measurements are made

in a dark environment. In such scenarios, Poisson distributed

photon noise dominates the image distortions. Hence, the

study of image measurements with Poisson distortions in SOL

scanners is vital and of higher importance.

Considering the photon count from a single pixel, x ∈ Z+,

we can write

x ∼ Poisson(λT ) , (3)

where λ is the intensity per unit time and T is the exposure

time, i.e., the duration over which photons are collected.

The above equation means that the photon count x follows

a Poisson distribution with mean λT (always non-negative),

which is its variance as well. As we can see, Poisson noise is

neither additive nor independent from the signal like additive
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white Gaussian noise. The probability density function of x is

given by,

Pr[X = x] =

{

e−λT ·(λT )x

x! λT > 0

δ(x) λT = 0
, X ∈ Z+ . (4)

According to [17], the SNR of the measurement can be

expressed as

ρ =
(E(x))2

E(x2)− (E(x))2
= λT . (5)

Therefore, we have that the SNR and the signal’s variance

increase at the same rate. This means that even though the

variance of the photon count increases with the average

number of incident photons, the SNR increases as well, which

means that we expect higher fidelity in the measurements

with increasing average photon count (which corresponds to

increasing intensity rate or exposure time).

B. Poisson Compressed Sensing

The fact that the sensors are modeled as photon counters has

implications on the mathematical model of the compressive

measurement strategies.

In the case of SOL scanners with CS, the compressive

Poisson measurements y ∈ Z
M×1
+ can be modeled as,

y ∼ Poisson(Φ vec{S(c,µ)}) . (6)

The expression indicates that the k-th photon count, yk,

k = 1, 2, . . . ,M , follows a Poisson distribution with its mean

being the k-th coefficient of the vector Φ vec{S(c,µ)}. To

relate the intensity rate λ and the exposure time T from the

Poisson model in ( to (, we consider their product which can

be interpreted as the reflected intensity (in units of photons)

at the peak of the profile G(t). We carry out the analysis in

terms of the intensities c. In practice, in order to increase the

value of c we can either increase the intensity rate of the

measurements λ (using, e.g., a brighter laser source) or the

exposure time T .

As discussed in [18], the measurement kernel Φ should

satisfy some physical constraints to be a realizable optical

system, i.e.,

• Positivity: The product of the measurement matrix Φ and

the signal (the laser intensity image) should produce a

vector with only non-negative coefficients, given that the

signal is non-negative, i.e.,

vec{S(c,µ)} � 0NL×1 =⇒ Φ vec{S(c,µ)} � 0M×1 ,
(7)

where the symbol � represents an element-wise compari-

son and 0 represents a zero matrix with its size mentioned

in the suffix.

• Flux preservation: The mean total intensity captured

should not exceed the total intensity incident on the

object. Mathematically, we can write it as

M
∑

m=1

(Φ vec{S(c,µ)})m ≤

NL
∑

n=1

(vec{S(c,µ)})n , (8)

where (.)i denotes the i-th entry of the vector in the

brackets.

Two types of matrices that satisfy the above constraints are

dense pseudorandom matrices and the normalized adjacency

matrix of an expander graph [18]. CS sensors that obtain

optical projections of the scene sensed like the coded apertures

[10] or the single pixel camera [16] can realize a Poisson CS

system that complies with the constraints mentioned above.

IV. CRAMÉR-RAO LOWER BOUND ANALYSIS

In this section we derive the Cramér-Rao Lower Bound

(CRLB) to assess the performance of three different mode of

measurements - uncompressed, CS-ICM and CS-MCM in the

presence of Poisson noise. We first discuss the CRLB of the

uncompressed measurements. The measurements x ∈ Z
NL×1
+

in this case are modeled as,

x ∼ Poisson(vec{S(c,µ)}) . (9)

To compute the Fisher information matrix, we need to con-

sider all the parameters that influence the distribution of the

observations, which are the desired parameters µ as well as

the amplitudes c which act as nuisance parameters. Therefore,

the set of parameters involved in the estimation process is

τ = [cTµT ]T ∈ R
2L×1. The (i, j)-th element of the Fisher

information matrix F (UC) ∈ R
2L×2L can then be obtained by

evaluating

F
(UC)
i,j = Ex

{

∂ log px|τ (x)

∂τi
·
∂ log px|τ (x)

∂τj

}

, (10)

where px|τ (x) is the PDF of the observations parametrized

by τ . Inserting the Poisson distribution from (, it is easy to

show that ( can be written as

F
(UC)
i,j =

(

∂ vec{S(c,µ)}

∂τi

)T

Θ
−1
UC

(

∂ vec{S(c,µ)}

∂τj

)

,

(11)

where ΘUC = diag{vec{S(c,µ)}} is the covariance matrix of

the measurements. The average CRLB per column is obtained

from the Fisher matrix as follows

E

(

1

L
‖µ− µ̂‖22

)

≥
1

L
trace(AT (F (UC)(τ ))−1A) , (12)

with µ̂ ∈ R
L being the estimate of the translation parameters

and AT = [0L×L 1L×L].
In the case of CS, a similar derivation shows that the (i, j)-

th coefficient of the Fisher matrix F (CS)(τ ) ∈ R
2L×2L is,

F
(CS)
i,j =

(

∂Φ vec{S(c,µ)}

∂τi

)T

Θ
−1
CS

(

∂Φ vec{S(c,µ)}

∂τj

)

,

(13)

with the covariance matrix ΘCS = diag{Φvec{S(c,µ)}}.

The CRLB is computed with the same formula as (.

The entire Fisher information matrices can be computed via

F (UC)(τ ) = V T
Θ

−1
UCV , (14)

F (CS)(τ ) = V T
Φ

T
Θ

−1
CSΦV . (15)
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where the matrix V ∈ R
NL×2L has the following structure:

V =
[

IL ⋄G(µ), IL ⋄
(

Ġ(µ) · diag{c}
)]

(16)

where ⋄ denotes the Khatri-Rao (column-wise

Kronecker) product, G(µ) = [g(µ1), . . . , g(µL)],

Ġ(µ) = [ġ(µ1), . . . , ġ(µL)], and ġ(µ) = dg(µ)
dµ .

Using straightforward calculations, we can obtain simplified

expressions for the CRLB for µℓ. In the uncompressed case,

we

E
(

|µ̂ℓ − µℓ|
2
)

≥
1

cℓ
·

1
∑N

n=1
ġn(µℓ)2

gn(µℓ)
−

(
∑

N

n=1
ġn(µℓ))

2

∑
N

n=1
gn(µℓ)

.

(17)

Moreover, for the ICM case, the closed-form expression looks

like ( with g(µ) replaced by Φ
(c) · g(µ). Equation ( is

instructive because it shows the explicit dependence of the

CRLB on the intensity cℓ as well as the pulse g(µ) and its

derivative ġ(µ).

V. NUMERICAL RESULTS

In this section we present some numerical results to evaluate

the achievable estimation accuracy as a function of all the sys-

tem parameters, including the different modes of measurement

(ICM, MCM). The simulations to obtain the CRLB plots are

carried out for a Gaussian shaped incident intensity spread,

where the n-th coefficient of the sampled intensity spread

across the ℓ-th column (ℓ = 1, 2, . . . , L) of the laser intensity

image S(c,µ) ∈ R
N×L
+ is given by,

Sn,ℓ = cℓ · exp

(

−
(n− 1− µℓ)

2

2σ2

)

, n = 1, 2, . . . , N . (18)

The variable σ is used to control the width of the intensity

spread function. The values chosen for N and σ are 50 and 1,

respectively. The amplitude parameters c for all the columns

are kept the same and they control the peak intensity of the

measured scene. Dense pseudorandom matrices are used for

the CS measurements in the experiment. In the experiment, for

MCM, the entries of the matrix used are either 0 or 1/M with

equal probability. In the case of ICM, block diagonal matrices

are used, with each block containing either 0 or L/M with

equal probability. The normalizing factors are different for

ICM and MCM to have the same average number of incident

photons per measurement, over several ensembles, for both

cases.

The CRLB for varying values of compression ratios κ =
M/NL and L are plotted against the peak intensity c in Fig.

Figure

VI. CONCLUSIONS

In this paper we discuss the application of Compressed

Sensing (CS) to Sheet-of-Light (SOL) surface scanning. We

discuss two CS measurement approaches, the independent

column measurements (ICM) which preserve the separability

of the underlying parameter estimation problem, as well as

the mixed column measurements (MCM) which are inherent in
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some of the practical embodiments of CS. We compared these

strategies in the presence of Poisson noise, which is commonly

encountered in imaging systems and has not been discussed in

conjunction with parameter estimation. In order to assess the

achievable estimation accuracy, we have derived the Cramer-

Rao Lower Bounds (CRLBs) for this setting. These also allow

us to systematically study the influence of system parameters,

such as the peak intensity, compression rate, image size, etc.

Our analysis shows that ICM is superior to MCM but there is a

degradation compared to the uncompressed case. This is partly

due to the fact that the compressive measurements lead to a

reduction in the total number of observed photons. However,

these results are specific to the dense pseudo-random matrices

that were considered in this paper.

Future work involves quantifying the performance degrada-

tion in CS analytically. Based on this analysis, more efficient

measurement matrices can be devised.
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