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Abstract—Direction-of-arrival (DOA) estimation in partly cal-
ibrated array composed of multiple fully calibrated subarrays
is considered. The location of the sensors in the subarrays are
assumed to be arbitrary, i.e., no specific subarray geometry is
assumed. Using array interpolation, we extend the previously pro-
posed decentralized ESPRIT algorithm (d-ESPRIT), originally
designed for shift-invariance array geometries, to arbitrary array
geometries. In our proposed algorithm, the array interpolation
is carried out locally at the subarrays, thus, communication
between the subarrays is required for DOA estimation but not for
interpolation. Simulation results demonstrate that our proposed
algorithm achieves better performance than the conventional
ESPRIT algorithm in perturbed shift-invariance arrays.

I. INTRODUCTION
DOA estimation using an array of sensors has a wide range

of applications, e.g., radar, sonar, and seismic exploration [1],
[2]. The MUSIC algorithm [3] is a subspace DOA estimation
method which exhibits the super resolution property and is
applicable in arbitrary array geometries as long as the array
is fully calibrated, i.e., the absolute location of all sensors in
the array is known. In the spectral MUSIC algorithm, DOA
estimation is carried out in form of a line search, where the
field of view is sampled at fine angular grid points, for which
the MUSIC spectrum [3, Eq. 6] is computed. Grid points which
correspond to the peaks in the MUSIC spectrum yield the
DOA estimates. The major drawback of search-based DOA
estimation algorithms as MUSIC is the high computational
complexity required for the evaluation of the spatial spectrum.

To overcome this drawback, search-free DOA estimation
algorithms, e.g., root-MUSIC [4] and ESPRIT [5], have been
developed. Although computationally faster with improved
performance, the root-MUSIC algorithm is only applicable in
uniform linear array (ULA) geometries [4], [6]. Likewise, to
achieve search-free DOA estimation, the ESPRIT algorithm
restricts the array geometry to shift-invariance array structures.

In [7], a linear array interpolation has been proposed, with
the objective to make search-free DOA estimation algorithms
applicable to sensor arrays with arbitrary array geometries.
Array interpolation is based on a mapping of the response
of the true (i.e., physical) sensor array with arbitrary sensor
locations to the response of a virtual array with desired
geometry, such as a ULA or a shift-invariance array. Utilizing
array interpolation, search-free DOA estimation is achieved in
[7] using the interpolated root-MUSIC algorithm and in [8],
[9] using the interpolated ESPRIT algorithm. The methods in
[7]–[9] assume fully calibrated arrays, and they are performed
in a centralized processing scheme.

Centralized processing, however, requires the collection of
measurements from all sensors at a central processor (CP).
A major drawback of centralized processing schemes with

a single CP, is the existence of communication bottlenecks
that generally emerge in large sensor networks with multi-
hop communication [10], [11]. To overcome these drawbacks
decentralized algorithms based on averaging consensus (AC)
protocols have been introduced [15]–[17]. In AC protocols,
an iterative fully decentralized calculation of the average of
distributed scalars is carried out using only local communi-
cation between neighboring nodes. No CP is required in AC
protocols, thus eliminating communication bottlenecks.

In large arrays, calibration is very difficult as different
parts of the array may be widely separated. Hence in order to
carry out DOA estimation, a common approach is to partition
the large array of sensors into a set of smaller subarrays
where the subarrays are considered as fully calibrated, and
the displacements between the subarrays are considered to be
unknown. Thus, the array is referred to as a partly calibrated
array [5], [18]. Decentralized DOA estimation based on the
AC protocol and the ESPRIT algorithm was introduced and
analyzed in [11]–[14] for partly calibrated arrays. The resulting
algorithm is referred to as the decentralized ESPRIT (d-
ESPRIT). Similar to the conventional ESPRIT, the d-ESPRIT
algorithm assumes shift-invariance arrays.

In this paper, we generalize the d-ESPRIT algorithm [11]
to the case of arbitrary array geometries using array inter-
polation. In contrast to the approaches introduced in [7] and
[9], in our interpolation approach we assume the array to be
partly calibrated. Moreover, in our decentralized approach, the
computation of the virtual array response is carried out locally
at each subarray, thus, keeping the communication cost of the
d-ESPRIT algorithm unchanged.

The remainder of this paper is organized as follows. In
Section II, the signal model is introduced. The conventional
ESPRIT [5] and d-ESPRIT [11] algorithms are briefly re-
viewed in Section III. In Section IV, array interpolation and
the interpolated d-ESPRIT algorithm (ID-ESPRIT) for DOA
estimation in arbitrary array geometries is introduced. In Sec-
tion V, simulation results which demonstrate the performance
of our proposed algorithm are presented.

In this paper, (·)T ,(·)H denote the transpose and complex
conjugate operators, respectively. The i×i identity matrix and
the operator which constructs diagonal matrix are expressed as
IIIi and diag[·], respectively. The expectation operator is denoted
as E[·], while 2 =−1 is the imaginary unit.

II. SIGNAL MODEL
Consider a planar array composed of M identical sensors.

The array is partitioned into K subarrays where the kth
subarray is comprised of Mk sensors, thus M =

∑K
k=1Mk.

The vector ξ̃ξξk,m = [x̃k,m, ỹk,m]T contains the x-y coordinates
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of the mth sensor in the kth subarray where the origin
of the coordinate system for each subarray corresponds to
its first sensor. The coordinate ξ̃ξξk,m (relative to the origin
of the kth subarray) is considered to be known, i.e., the
subarray is fully calibrated. However, displacements between
the subarrays are assumed to be unknown, i.e., the whole array
is partly calibrated [18]. Thus, the location of the first sensor
in the kth subarray with respect to the first sensor in the first
subarray, denoted as ξξξk = [xk, yk], is unknown.

Signals from L far-field narrow-band sources impinge onto
the array from directions θθθ = [θ1, . . . , θL]T relative to the array
broadside. The measurement model at time t is written as

zzzk(t) = AAAk(θθθ, ξξξk)sss(t) +nnnk(t), (1)

where zzzk(t) ∈ CMk×1 is the received base-band signal vector
at the kth subarray, sss(t) ∈ CL×1 is the signal vector of the L
sources, and nnnk(t) ∈ CMk×1 is the vector of temporally and
spatially white complex circular Gaussian sensor noise. The
steering matrix AAAk can be factorized as

AAAk(θθθ, ξξξk) = VVV k(θθθ)ΞΞΞk(θθθ, ξξξk), (2)

where the matrix VVVk(θθθ)=[vvvk(θ1), . . . , vvvk(θL)] is independent of
the unknown displacements ξξξk, vvvk(θ)=[1, exp(πξ̃ξξ

T

k,2νννθ), . . .,

exp(πξ̃ξξ
T

k,Mk
νννθ)]

T , νννθ = [sin θ, cos θ]T , ΞΞΞk(θθθ, ξξξk) =
diag[exp(πξξξTk νννθ1), . . . , exp(πξξξTk νννθL)], and all distances are
measured in half-wavelength.

Let zzz(t)=[zzzT1 (t), . . . , zzzTK(t)]T , nnn(t)=[nnnT1 (t), . . . ,nnnTK(t)],
and AAA(θθθ, ξξξ) = [AAAT1 (θθθ, ξξξ1), . . . ,AAATK(θθθ, ξξξK)]T , where ξξξ =
[ξξξT1 , . . . , ξξξ

T
K ]T . Then, the measurement covariance matrix RRR =

E[zzz(t)zzzH(t)] is given by

RRR = AAA(θθθ, ξξξ)PPPAAAH(θθθ, ξξξ) + σ2IIIM , (3)

where PPP = E[sss(t)sssH(t)] is the covariance matrix of the source
signals and σ2 is the noise variance. The eigendecomposition
of the covariance matrix is expressed as

RRR = UUU sΛΛΛsUUU
H
s +UUUnΛΛΛnUUU

H
n , (4)

where UUU s = [uuu1, . . . ,uuuL], UUUn = [uuuL+1, . . . ,uuuM ] denote
the signal and noise subspace matrices, respectively, ΛΛΛs =
diag[λ1, . . . , λL], ΛΛΛn = diag[λL+1, . . . , λM ], and uuu1, . . . ,uuuM
are the eigenvectors of the matrix RRR corresponding to the
eigenvalues ordered as λ1 ≥ . . . ≥ λL > λL+1 = . . . =
λM = σ2.

The sample estimate of the covariance matrix is given by

R̂RR =
1

N

N∑
t=1

zzz(t)zzzH(t), (5)

where N is the number of snapshots of the array output. Let
ÛUU s, Λ̂ΛΛs, ÛUUn, Λ̂ΛΛn, ûuui, λ̂i obtained from the eigendecomposition
of the matrix R̂RR be the estimates of UUU s, ΛΛΛs, UUUn, ΛΛΛn, uuui, λi,
respectively, for i = 1, . . . ,M .

III. THE DECENTRALIZED ESPRIT ALGORITHM
In this section, the conventional ESPRIT algorithm is

revisited and the AC protocol is described. Then, the d-ESPRIT
algorithm which is based on the decentralized eigendecompo-
sition of the sample covariance matrix using the decentralized
power method (d-PM) is reviewed.

A. The Conventional ESPRIT Algorithm
The conventional ESPRIT algorithm introduced in [5]

performs search-free DOA estimation. However, it requires the
array to be shift-invariance, i.e., the whole array is partitioned
in upper and lower groups of sensors, where the lower groups
of sensors correspond to the upper groups of sensor displaced
by a shift of d.

Let eee1, . . . , eeeM be the columns of the M × M identity
matrix IIIM and let M̃ denote the number of sensors in the
upper and lower groups of sensors. Then, the upper and
lower selection matrices are defined as JJJ = [eeei1 , . . . , eeeiM̃ ]T

and JJJ = [eeej1 , . . . , eeejM̃ ]T , respectively, where i1, . . . , iM̃ and
j1, . . . , jM̃ are the indices of the sensors in the upper and lower
groups, respectively. Based on the selection matrices JJJ and JJJ ,
we define

ÛUU s = JJJÛUU s, ÛUU s = JJJÛUU s. (6)

In [5], it has been shown that the DOAs can be estimated as

θl = sin−1(arg(ψl)/πd), (7)

where ψl, l = 1, . . . , L are the eigenvalues of the L×L matrix

ψψψ = (ÛUU
H

s ÛUU s)
−1ÛUU

H

s ÛUU s. (8)

B. The Averaging Consensus Protocol
Let y1, . . . , yK be K scalars distributed over the network of

K subarrays where the kth subarray stores the kth scalar value
yk. Then, the AC protocol can be used iteratively to compute
the average of these scalars, where in the pth iteration of the
AC protocol, the kth node updates its value of the average y(p)k
as follows:

y
(p)
k = wk,ky

(p−1)
k +

∑
i∈Nk

wi,ky
(p−1)
i , (9)

where Nk denotes the set of neighbors of the kth subarray and
wi,k is the weighting factor associated with the communication
link between the subarrays i and k. The weighting factors
satisfy wi,k = 0 when i 6∈ Nk. The AC iteration is initialized
with y(0)k = yk. The update iteration in Eq. (9) can be written
as

yyy(p) = WWWyyy(p−1) = WWW 2yyy(p−2) = . . . = WWW pyyy(0), (10)

where WWW denotes the matrix with entries [WWW ]i,j = wi,j for
i, j = 1, . . . ,K and yyy(p) = [y

(p)
1 , . . . , y

(p)
K ]T . For further

details concerning the AC protocol and the optimal selection
of the weighting factors we refer to [15].

C. The Decentralized ESPRIT Algorithm
The d-ESPRIT algorithm, introduced in [12], utilizes the

decentralized power method (d-PM), which is proposed in
[10], to estimate the signal subspace ÛUU s. Similar to the conven-
tional PM [19], the lth eigenvector of the sample covariance
matrix R̂RR at the qth iteration of the d-PM is computed as

ûuu
(q)
l = (IIIM − ÛUU l−1ÛUU

H

l−1)ûuu
′(q−1)
l , (11)

where ûuu(q−1)l is the lth eigenvector computed in the preceding
iteration (q− 1), ûuu

′(q−1)
l = R̂RRûuu

(q−1)
l is an intermediate vector,

and ÛUU l−1 = [ûuu1, . . . , ûuul−1] is the concatenation of (l − 1)

eigenvectors of R̂RR computed previously. The vector ûuu(0)l is
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chosen randomly. The main idea of the d-PM is to partition the
lth eigenvector as ûuu(q)l = [ûuu

(q)T
l,1 , . . . , ûuu

(q)T
l,K ]T , where the kth

subarray updates and stores only the kth part, ûuu(q)l,k ∈ CMk×1

of the vector ûuu(q)l . The kth part of the vector ûuu
′(q−1)
l can be

written as ûuu
′(q−1)
l,k = 1

N

∑N
t=1 zzzk(t)z̃

(q−1)
t,l , where z̃

(q−1)
t,l =

zzzH(t)ûuu
(q−1)
l . The vector ûuu

′(q−1)
l,k can be computed locally if the

scalars
{
z̃
(q−1)
t,l

}N
t=1

are available at the kth subarray. This is

achieved using the AC protocol with P iterations since z̃(q−1)t,l
can be written as an average of scalars which are distributed
among the subarrays as z̃(q−1)t,l = K( 1

K

∑K
k=1 zzz

H
k (t)ûuu

(q−1)
l,k ).

The product ÛUU l−1ÛUU
H

l−1ûuu
′(q−1)
l in Eq. (11) can also be com-

puted using the AC protocol, see [10] for details. After a
sufficiently large1 number of PM iterations Q, the vector ûuu(Q)

l
is normalized to obtain the estimate of the lth eigenvector
of R̂RR, i.e., ûuul = ûuu

(q)
l /‖ûuu(q)l ‖. The decentralized estimate of

the signal subspace ÛUU s which we obtain from the d-PM is
distributed among all the subarrays where the kth subarray
stores only the Mk rows of the matrix ÛUU s which correspond
to its measurements. Thus, the matrix ÛUU s is partitioned as

ÛUU s = [ÛUU
T

s,1, . . . , ÛUU
T

s,K ]T . (12)

In [11], it is shown that the matrix ψψψ, defined in Eq. (8),
can be computed in a decentralized fashion using the AC
protocol such that each subarray has access to this matrix.
Consequently, each subarray is able to estimate the DOAs
locally.

IV. THE DECENTRALIZED ESPRIT ALGORITHM FOR
ARBITRARY ARRAY GEOMETRIES

In this section, the general approach for linear interpolated
array is briefly reviewed. Then, the interpolated decentralized
ESPRIT algorithm (ID-ESPRIT) is introduced.

A. Array Interpolation
In the linear interpolation technique [7], the virtual array

manifold is obtained by linear transformation of the true array
manifold over a given angular sector. Let Θ denote the grid
of G directions which is obtained by sampling the field-of-
view at directions Θ = [θ̃1, . . . , θ̃G], where θ̃g ∈ [−90, 90],
for g = 1, . . . , G. Then, assuming a fully-calibrated array as
in [7], the virtual array manifold ĂAA(Θ) can be written as

ĂAA(Θ) = BBBAAA(Θ), (13)

where BBB is the transformation matrix and AAA(Θ) is the true
array manifold computed at the grid points Θ. The structure
of the virtual array is chosen according to the DOA estimation
algorithm that is applied in the estimation. For example, in
[7], the virtual array geometry is chosen as a ULA as the
root-MUSIC algorithm is applied to the resulting transformed
measurements, while in [8] and [9] the virtual array is chosen
as a shifted version of the true array and the ESPRIT algorithm
is used. Since both matrices ĂAA(Θ) and AAA(Θ) are known,
the transformation matrix BBB can be computed from Eq. (13)
using the Least Squares (LS) method. More sophisticated
interpolation methods are known, see e.g., [20].

1In simulations, we observed that a number of Q = 10 PM iterations is
sufficient.

B. Interpolated Decentralized ESPRIT
Our aim is to generalize the d-ESPRIT [12] algorithm to

arbitrary array geometries. Since in the d-ESPRIT algorithm
unknown displacements between the subarrays are assumed,
the true array manifold is not completely known as a function
of the DOAs, i.e., both matrices AAA and ĂAA in Eq. (13) are not
fully known. Nevertheless, in the sequel, we show that array
interpolation can still be applied to our scenario.

As in [8], [9], we assume that the virtual array manifold
is a shifted version of the true array manifold which can be
expressed at the kth subarray as

ĂAAk(Θ, ξξξ) = AAAk(Θ, ξξξ)φφφ(Θ, d), (14)

where φφφ(Θ, d) = diag[exp(πd sin θ̃1), . . . , exp(πd sin θ̃G)]
and d is the shift between the true and the virtual subarray
measured in half-wavelength. Substituting Eq. (14) in Eq. (13),
yields

AAAk(Θ, ξξξ)φφφ(Θ, d) = BBBkAAAk(Θ, ξξξ). (15)

Using the factorization (1) in Eq. (15), we obtain

VVV k(Θ)ΞΞΞk(Θ, ξξξk)φφφ(Θ, d) = BBBkVVV k(Θ)ΞΞΞk(Θ, ξξξk). (16)

Noting that ΞΞΞk(Θ, ξξξk)φφφ(Θ, d) = φφφ(Θ, d)ΞΞΞk(Θ, ξξξk) since both
matrices ΞΞΞk(Θ, ξξξk) and φφφ(Θ, d) are diagonal and invertible
Eq. (16) is reduced to

VVV k(Θ)φφφ(Θ, d) = BBBkVVV k(Θ), (17)

where both matrices VVV k(Θ) and φφφ(Θ, d) are known. Thus,
the transformation matrix BBBk can be computed using the
LS method locally at the kth subarray, since the matrix BBBk
depends only on the (locally available) matrices VVV k(Θ) and
φφφ(Θ, d). Note that the matrixBBBk is computed only once, unless
the physical subarray geometry has been modified.

We point out that, the transformation introduced in Eq. (15)
can also be applied jointly to the whole array, i.e., as
AAA(Θ, ξξξ)φφφ(Θ, d) = BBBAAA(Θ, ξξξ), which due to the increased num-
ber of interpolation parameters, yields improved interpolation
quality. However, the resulting interpolation matrix BBB depends
on the geometry of all the subarrays through the matrices
VVV 1(Θ), . . . ,VVV K(Θ) and, thus, it cannot be computed locally.
Consequently, to avoid the communication load associated
with the joint interpolation, we use the local interpolation in
Eq. (15).

The ESPRIT algorithm [5] can be generalized to arbitrary
array geometries using the interpolation matrices BBB1, . . . ,BBBK
and the estimated signal subspace matrices ÛUU s,1, . . . , ÛUU s,K as
follows. Firstly, the signal subspace matrices of the virtual
array is computed as

ˆ̆
UUU s,k = BBBkÛUU s,k, (18)

for k = 1, . . . ,K. Secondly, since the virtual subspace matrix
computed in Eq. (18) corresponds to the shifted version of the
real array, analogous to the ESPRIT algorithm, the matrix ψψψ
in Eq. (8) can be estimated as

ψ̂ψψ = (ÛUU
H

s ÛUU s)
−1ÛUU

H

s
ˆ̆
UUU s, (19)

where similar to Eq. (12) the resulting virtual subspace matrix
is partitioned as ˆ̆

UUU s = [
ˆ̆
UUUTs,1, . . . ,

ˆ̆
UUUTs,K ]T . The ID-ESPRIT is

summarized in Algorithm 1.
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Algorithm 1 summary of the ID-ESPRIT algorithm

Step 1: Estimate the signal subspace ÛUU s in a fully decen-
tralized fashion using the d-PM as in [10].
Step 2: Locally compute ˆ̆

UUU s,k = BBBkÛUU s,k at each subarray.
Step 3: Compute the matrix ψ̂ψψ in a fully decentralized
fashion as introduced in [11] and [12].
Step 4: Estimate the DOAs locally at each subarray from
the eigenvalues of ψ̂ψψ using Eq. (7).

Subarray 1

upper group lower group

Subarray 2

Subarray 3
Subarray 4

Subarray 5

Subarray 6

Fig. 1. Scenario 1: the array topology possesses the shift-invariance property,
however, the location of the second sensor of the first subarray is perturbed.

V. SIMULATION RESULTS
An array composed of K = 6 subarrays, where each

subarray consists of two sensors, i.e., M=12, is used to analyze
the performance of the ID-ESPRIT algorithm in two scenarios.

In the first scenario, which is demonstrated in Fig. 1, the
location of the sensors is chosen such that the array exhibits
the shift-invariance property. Then, the location of the second
sensor of the first subarray is randomly perturbed to introduce
small displacements around the nominal (shift-invariance) lo-
cations. The locations of the sensors of the 6 subarrays mea-
sured in half-wavelength are {(0, 0), (1, 0.05)}, {(0.3, 0.7),
(1.3, 0.7)}, {(2.0, 0.4), (3.0, 0.4)}, {(5.0, 0.2), (6.0, 0.2)},
{(7.0,−0.2), (8.0,−0.2)}, and {(6.0, 0.8), (7.0, 0.8)}. Note
that if the second sensor of the first subarray is shifted by
−0.05 at the y axis, then the array would become shift-
invariance.
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Fig. 2. RMSE as a function of SNR for Scenario 1 where N = 100.
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Fig. 3. RMSE as a function of N for Scenario 1 where SNR= 20 dB.
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Fig. 4. RMSE as a function of SNR for Scenario 2 where N = 100.
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Fig. 5. RMSE as a function of N for Scenario 2 where SNR= 20 dB.
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In the second scenario, the locations of the second
sensor in all subarrays are selected arbitrarily. The loca-
tions of the sensors of the 6 subarrays measured in half-
wavelength in this scenario are {(0, 0), (0.9, 0.1)}, {(0.3, 0.7),
(1.4, 0.69)}, {(2.0, 0.4), (2.8, 0.42)}, {(5.0, 0.2), (6.0, 0.15)},
{(7.0,−0.2), (8.0,−0.4)}, and {(6.0, 0.8), (7.6, 1.0)}.

In both scenarios, signals from L = 2 far-field narrow-
band sources impinge onto the subarrays from directions −4◦

and −0◦. The root mean square error (RMSE) of the ID-
ESPRIT algorithm is computed over 100 Monte Carlo runs
for 3 different numbers of AC iterations, P = 20, 30, and 40,
in both scenarios. The weighting scheme in [15, Section 4.2]
is used to compute the entries of the averaging matrix WWW ,
where the subarrays linked with (red) arrows in Fig. 1 are
considered to be able to directly communicate with each other.
The following parameters are selected for the ID-ESPRIT
algorithm: d = 1, Q = 10, and the sampling step size is
0.1◦ in the grid Θ. Moreover, the empirical performance of
the conventional ESPRIT and the interpolated conventional
ESPRIT (IC-ESPRIT) algorithms and the Cramer Rao bound
(CRB) [21] is plotted for benchmarking, in both scenarios.

A. Scenario 1
Simulation results for Scenario 1 are shown in Fig. 2 and

Fig. 3. In Fig. 2, the RMSE is plotted as a function of the
signal-to-noise ratio (SNR) where the number of snapshots is
fixed to N = 100. It can be observed in this figure that the
conventional ESPRIT algorithm does not achieve the CRB due
to the perturbation in the subarray structure. The IC-ESPRIT
algorithm achieves the CRB since it does not assume a shift-
invariance array. The proposed ID-ESPRIT algorithm achieves
a performance similar to the conventional ESPRIT for P =
20 and achieves a better performance than the conventional
ESPRIT for P = 30 and 40. Observe that at high SNRs the
performance of the ID-ESPRIT algorithm does not improve
with SNR, due to the errors introduced by the finite number
of AC iterations. This behaviour is noticeable in the d-ESPRIT
algorithm and has been analyzed in [11].

Fig. 3 displays the RMSE as a function of the number
of snapshots N while the SNR is fixed to 20 dB. Similar
to Fig. 2, it can be observed that the ID-ESPRIT algorithm
perform better than the conventional ESPRIT as it does not
depend on the assumption of shift-invariance arrays.

B. Scenario 2
The simulation results for the second scenario are demon-

strated in Fig. 4 and Fig. 5. It can be observed in both figures
that the RMSE of the conventional ESPRIT algorithm is very
high, since in this scenario the conventional ESPRIT algorithm
is not able to resolve the two sources. However, the IC-ESPRIT
and the ID-ESPRIT algorithms achieve performance similar to
Scenario 1, since they both do not rely on the assumption of
shift-invariance arrays.

VI. CONCLUSION
A search-free decentralized DOA estimation algorithm is

introduced which is applicable to partly calibrated arrays with
an arbitrarily known subarray geometry. This is achieved
by applying array interpolation in the decentralized ESPRIT
algorithm. We have shown by simulations that our proposed
algorithm achieves better performance than the conventional
ESPRIT if the array has a perturbed shift-invariance geometry.
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