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Abstract—Many signal and image processing applications,
including texture analysis, radar detection or EEG signal classi-
fication, require the computation of a centroid from a set of
covariance matrices. The most popular approach consists in
considering the center of mass. While efficient, this estimator
is not robust to outliers arising from the inherent variability
of the data or from faulty measurements. To overcome this,
some authors have proposed to use the median as a more robust
estimator. Here, we propose an estimator which takes advantage
of both efficiency and robustness by combining the concepts of
Riemannian center of mass and median. Based on the theory of
M-estimators, this robust centroid estimator is issued from the so-
called Huber’s function. We present a gradient descent algorithm
to estimate it. In addition, an experiment on both simulated and
real data is carried out to evaluate the influence of outliers on
the estimation and classification performances.

I. INTRODUCTION

Covariance matrices are used in a wide variety of ap-

plications in signal and image processing, including array

processing [1], radar detection [2]–[4], object detection [5],

[6], image segmentation [7] or classification [8]–[11], etc.
Recently, covariance matrices have been modeled as real-

izations of Riemannian Gaussian distributions [12] (RGDs)

and further used in classification algorithms. Mixture models

have also been proposed, requiring clustering approaches such

as k-means or expectation maximization (EM) to estimate

their parameters. These clustering procedures are based on

regrouping the dataset’s elements into clusters characterized

by their central values, called centroids. The most widely

used centroid estimator is the Riemannian center of mass [13]

which corresponds to the maximum likelihood estimate of the

central element of an RGD [12]. While being efficient, the

main disadvantage of the center of mass is its non-robust

behavior to outliers that can exist in the dataset [14], [15].

To overcome this problem, the concept of median has been

extended to Riemannian manifolds, as a robust alternative for

the centroid computation [16]–[19].
The main contribution of this paper is to propose a centroid

estimator which is a good trade-off between efficiency and

robustness. Based on the theory of M-estimators, the present

work introduces a novel class of robust centroid estimators,

issued from the so-called Huber’s function [20], [21]. This

novel Huber’s centroid extends both concepts of center of

mass and median. Some experiments are proposed to eval-

uate the influence of outliers on estimation and classification

performances. The second contribution of this paper is to draw

an analogy between conventional covariance matrix estimators

and the considered centroid estimation technique.
The paper is structured as follows. Section II presents a

parallel between the covariance matrix robust estimation and

the estimation of cluster centroids. Section III introduces the

proposed Huber’s estimator, along with a gradient descent

algorithm for its computation. The center of mass and the

median are presented as special cases and their behavior with

respect to outliers is analyzed. In Section IV, the proposed

Huber’s centroid is used for texture image classification.

Finally, Section V reports some conclusions and perspectives

on this work.

II. FROM COVARIANCE MATRIX ESTIMATION TO

CENTROIDS ESTIMATION

Let {x1, . . . ,xN} be a set of N independent and identically

distributed (i.i.d.) random variables. In this case, the M-

estimator M̂ of the covariance matrix M characterizing the

dataset is defined as the solution of [20], [21]:

M̂ =
1

N

N∑
i=1

u(xT
i M̂

−1xi) xix
T
i , (1)

where u(·) is a positive-valued function, which gives a weight

to each observation xi. The purpose of this weight function

is to control the influence of aberrant values in the estimation

process. Thus, to ensure a small contribution of outliers, u(·)
has to be a decreasing function.

Depending on the weight function, various covariance ma-

trix estimators can be defined. For example, if u(t) = 1, all

the observations have the same weight, resulting in the sample

covariance matrix (SCM) estimator. Moreover, if u(t) = 1/t a

robust estimator called the fixed point (FP) estimator [21], also

known as the Tyler’s estimator, is obtained. In addition, the

Huber’s estimator [20], a trade-off between the SCM and the

FP, can be considered for the specific Huber function defined

as:

u (t) = min

(
1,

T

t

)
. (2)

This behavior is illustrated in Fig. 1. The influence of outliers

is controlled by the fixed threshold T . If the quadratic term

t = xT
i M̂

−1xi is smaller than T , the Huber’s function is

constant, otherwise u(·) will start to decrease.
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Fig. 1. Behavior of the Huber’s function u with respect to the fixed threshold
T , as a function of t.

The estimated covariance matrices can be further used in

clustering algorithms, like k-means, or EM, and therefore

the centroids of subsets of covariance matrices have to be

determined. Let {M1, . . . ,MN} be a random sample of N
covariance matrices. The estimated centroid is the covariance

matrix ̂̄M that minimizes the following cost function:

̂̄M = argmin
M̄

f(M̄). (3)

In order to obtain an accurate representation of the dataset

by the clusters’ central values, an estimation algorithm robust

to outliers has to be considered. Thus, the choice of the

cost function f(M̄) needs special care. Starting from (3),

different estimators can be defined, including the center of

mass (CM) [13], [22] and the median (Med) [2], [17].

By drawing a parallel between covariance matrix estimation

and centroid estimation, several similarities can be highlighted.

First, the concept of center of mass is close to the one of

SCM. More precisely, the SCM is the maximum likelihood

estimate (MLE) for multivariate Gaussian distributions, while

the center of mass is the MLE for Riemannian Gaussian dis-

tributions [12]. Second, even though it is a popular estimator,

the CM, like the SCM, is easily influenced by the presence of

outliers [16], [17]. Third, the problem of outliers can be solved

by using robust estimators: the median [17] for centroids and

its analogous, the FP estimator, for covariance matrices.

Considering all the previous common points and inspired by

the theory of M-estimators [20], [21], [23], the next section

introduces a novel centroid estimator on the manifold of

covariance matrices, called the Huber’s centroid.

III. THE HUBER’S ESTIMATOR FOR CENTROIDS

ESTIMATION

A. Definition of Huber’s centroid

Starting from the M-estimator of covariance matrices given

in (1), the M-estimator of a centroid is obtained by minimizing

the following cost function:

fu(M̄) =
1

N

N∑
i=1

u
(
d(M̄,Mi)

)
d2(M̄,Mi), (4)

where u(·) is a positive-valued weight function, and d
represents the Rao’s Riemannian distance defined as [24]

d(M1,M2) =
[∑

i(lnλi)
2
] 1

2 , with λi, i = 1 . . .m being

the eigenvalues of M−1
2 M1.

Similar to the covariance matrix estimation problem, the

weight function u(·) has to decrease towards zero. This condi-

tion is required in order to ensure that the outliers have a small

contribution to the centroid estimation. Interestingly, note that

the weight function u depends on the Riemannian distance

for the centroid estimation problem, while u depends on the

Mahalanobis distance for the covariance matrix estimation

problem.

Based on the so-called Huber’s function, recalled in (2),

and on the cost function given in (4), the proposed Huber’s

centroid is the covariance matrix ̂̄M that minimizes:

fH(M̄) =
1

N

N∑
i=1

d2(M̄,Mi) 1{d(M̄,Mi)≤T}

+
T

N

N∑
i=1

d(M̄,Mi) 1{d(M̄,Mi}>T}, (5)

where 1{a≤b} is the indicator function, which equals 1 if a ≤ b
and 0 otherwise. In addition, the threshold T discriminates

between outliers and normal data.

In order to find the Huber’s centroid, which is the minimum

of (5), a gradient descent algorithm [25] is proposed. Then, the

gradient of fH(M̄) with respect to M̄, denoted by ∇fH(M̄),
has to be computed as:

∇fH(M̄) = − 2

N

N∑
i=1

LogM̄(Mi) 1{d(M̄,Mi)≤T}

− T

N

N∑
i=1

LogM̄(Mi)

d(M̄,Mi)
1{d(M̄,Mi}>T}, (6)

where LogM̄(·) is the Riemannian logarithm mapping. Once

that this value is obtained, the centroid is recursively computed

by:

M̄it+1 = ExpM̄it
(−sit ∇fH(M̄it)), (7)

with sit being the descent step and ExpM̄(·) the Riemannian

exponential mapping1. For each iteration it + 1, the value

of sit is determined by using the Armijo’s backtracking

procedure [27].

The computation procedure stops when a fixed number of

iterations is reached, or when the gradient’s norm is smaller

than a predefined value. Thus, the Huber’s centroid estimate

is found.

B. Special cases of Huber’s centroid

The value chosen for the threshold T in (5) may lead to the

expression of two well-known centroid estimators, that are the

1Due to the page restriction length, the interested reader is referred to [12],
[26] for a definition of the Riemannian exponential and logarithm mappings.
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center of mass and the median. More precisely, if T = ∞ the

cost function giving the center of mass is obtained by:

fCM (M̄) =
1

N

N∑
i=1

d2(M̄,Mi), (8)

while T = 0 yields to the cost function of the median:

fMed(M̄) =
1

N

N∑
i=1

d(M̄,Mi). (9)

In other words, for a small number of outliers, the Huber’s

centroid behaves as the center of mass, while it is similar to

the median in the presence of outliers.

From the computational point of view, it can be noticed that

the first term in (6) corresponds to the cost function of the

center of mass, while the second term represents the median.

Note that the median computation procedure may yield

numerical instabilities due to the division by the distance

d(M̄,Mi) in (6). If the estimated centroid M̄ is close to

the sample Mi, then d(M̄,Mi) becomes close to zero and

the median cannot be defined. A possible solution for this

situation is proposed in [16]: at each iteration, the observations

that are too close from the estimated centroid are excluded. An

important advantage of the Huber’s centroid is the fact that this

problem is automatically solved by choosing an appropriate

value for the threshold T . In [28], a method for automatically

compute the threshold’s value is introduced, based on the

concept of median absolute deviation.

C. Performance analysis

In this section, the estimation performance of the proposed

method is analyzed on simulated data. The performed exper-

iment investigates the influence of outliers on the Huber’s

centroid. The results are also compared to the center of mass

and the median.

For this purpose, a set of N covariance matrices

{M1, . . . ,MN} of size m×m is considered. These matrices

are i.i.d. samples from the Riemannian Gaussian distribu-

tion [12] of central value M̄ and dispersion σ. The probability

density function of the RGD with respect to the Riemannian

volume element is [12]:

p(M|M̄, σ) =
1

Z(σ)
exp

{
− d2(M, M̄)

2σ2

}
, (10)

where Z(σ) is a normalising factor independent of the centroid

M̄, and d(M, M̄) is the Riemannian distance. The interested

reader is referred to [12] to generate samples from an RGD.

In practice, a set of N = 1000 matrices of size 2 × 2 is

created, knowing that its elements are obtained for a central

value M̄ having the form:

M̄(i, j) = ρ|i−j| for i, j ∈ �1,m�. (11)

In this case, ρ = 0.7 and the dispersion parameter σ is set to

0.1. Further on, the dataset is corrupted by including aberrant

data. These outliers are i.i.d. samples generated according to
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Fig. 2. Influence of the percentage of outliers on the estimation performance:
(a) RMSE, (b) norm of the bias vector field.

an RGD, having the dispersion parameter σo = 0.1 and the

centroid 10×Mo, Mo being given by (11) with ρo = 0.1.

In order to evaluate the centroid estimation methods, the

concept of intrinsic analysis for statistical estimation [29]–

[31] is used. Therefore, the definitions of intrinsic root-mean

square error (RMSE) and intrinsic bias vector field are recalled

next.

Let ̂̄M be the estimated centroid of the real central value

M̄. The intrinsic RMSE is given by [29]–[31]:

RMSE =

√
E
[
d2(̂̄M, M̄)

]
, (12)

where d(·) is the Riemannian distance. In addition, the bias

vector field b(M̄) of ̂̄M is defined as [29]–[31]:

b(M̄) = LogM̄EM̄

[̂̄M]
= E

[
LogM̄

̂̄M]
, (13)

with EM̄

[̂̄M]
= ExpM̄E

[
LogM̄

̂̄M]
. Since the bias vector

field b(M̄) in (13) is a covariance matrix, its norm is computed

as:

||b(M̄)|| = tr
( (

M̄−1b(M̄)
)2 )

. (14)

The RMSE and the norm of the bias vector field are dis-

played in Figs. 2(a) and 2(b) respectively. In these figures,

the influence of the percentage of outliers on the estimation

methods is shown. The center of mass, the median and the

Huber’s estimator with T = 0.1, 0.25 and 0.5 are considered,
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knowing that the percentage of outliers varies from 0 to 40%.

By analyzing these curves, it can be observed that the center

of mass (in blue) is the estimator the most influenced by the

presence of outliers. On the other hand, the median (in black)

and the Huber’s centroid (in red) demonstrate their robust

behavior. In addition, the Huber’s centroid confirms the fact

that it can be interpreted as a trade-off between the center of

mass and the median.

IV. APPLICATION TO TEXTURE IMAGE CLASSIFICATION

In this section, the performances of the Huber’s estimator

for centroids computation are analyzed in the context of

texture image classification, by using the MIT Vision Texture

(VisTex) database [32].

The experiment is designed in order to evaluate the influence

of outliers on the correct classification rate. Therefore, the

original VisTex database is modified to contain aberrant data.

First, each image in the database is divided into 169 patches

of 128 × 128 pixels, with an overlap of 32 pixels. Next,

abnormal data are introduced. For each image, between 0
and 60 patches have their intensity modified, by applying

a gradient of luminosity. The corrupted patches are further

considered as being outlier patches.

The new database is used for supervised classification,

assuming that it contains 40 classes. Thus, for each patch a

feature vector has to be extracted. In this case, the spatial

dependence of the wavelet coefficients is considered. There-

fore, the patches are filtered by using the Daubechies’ db4

wavelet, with 2 scales and 3 orientations. In addition, to

capture the textural information, two neighborhoods (2×1 and

1× 2) are extracted for each pixel in the 6 wavelet subbands.

These pixels are modeled by zero-mean multivariate Gaussian

distributions, characterized by their sample covariance matrix.

In the end, each patch is represented by a feature vector F
containing 12 covariance matrices of size 2× 2.

The patches (the set of feature vectors) are equally and ran-

domly divided into training and testing subsets. This division

is iterated 100 times and for each training class, the centroid

of the f th feature of class c, denoted ̂̄Mc,f , is computed. The

classification is performed next, based on the Bayes rule. More

precisely, a test patch t is affected to the class c representing

the minimum over c of [9], [10]:

F∑
f=1

d2(Mt,f ,
̂̄Mc,f ), (15)

where Mt,f is the SCM of the f th feature of the test patch t.
The centroid computation is carried out by using the Huber’s

centroid estimator with T = 0.1, 0.25, 0.5 and its two special

cases: the center of mass (T = ∞) and the median (T = 0).

For all these methods, the classification results are reported

in Fig. 3. The correct classification rate is represented as

a function of the number of outlier patches per class. By

analyzing this figure, several remarks can be retained. First, for

no aberrant data, all the methods perform identically. Second,

the center of mass (in blue) is strongly influenced by the
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Fig. 3. Correct classification rate when centroids are estimated by using the
center of mass, the median and the Huber’s centroid with T = 0.1, 0.25,
0.5.

presence of outliers and its performance decreases rapidly.

Third, the median (in black) and the Huber’s centroid (in

red) demonstrate their robust behavior, being less sensitive

to aberrant data. And finally, the Huber’s centroid gives

classification rates that are between those obtained with the

center of mass and the median.

V. CONCLUSION

In this article, a novel robust centroid estimator is proposed.

Based on the theory of M-estimators, this estimator, called the

Huber’s centroid, is defined by using the Huber’s function.

A gradient descent algorithm is also proposed to estimate it.

Since this estimator generalizes both the center of mass and

the median, the proposed Huber’s centroid is a good trade-off

between efficiency and robustness. In addition, by carefully

choosing its unique parameter T , the numerical instabilities

that may occur for the median computation are avoided.

The properties of the proposed estimator have been con-

firmed by the experiments. Its robustness to outliers has been

investigated first on simulated data. Next, it has been applied

to texture image classification on a modified VisTex database.

For both experiments, for no outliers, all the three methods

perform identically, but in the presence of aberrant data, the

Huber’s centroid and the median yield the best results.

In the considered experiments, no convergence problems

have been encountered. Nevertheless, further works will in-

vestigate the convergence of the gradient descent. In addition,

a special interest of the proposed centroid estimator will be

dedicated to the construction of codebooks in patch-based

classification algorithms [11].
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