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Abstract—This paper presents a detection scheme for de-
termining the number of signals that are correlated across
multiple data sets when the sample size is small compared to the
dimensions of the data sets. To accommodate the sample-poor
regime, we decouple the problem into several independent two-
channel order-estimation problems that may be solved separately
by a combination of principal component analysis (PCA) and
canonical correlation analysis (CCA). Since the signals that are
correlated across all data sets must be a subset of the signals
that are correlated between any pair of data sets, we keep only
the correlated signals for each pair of data sets. Then, a criterion
inspired by a traditional information-theoretic criterion is applied
to estimate the number of signals correlated across all data
sets. The performance of the proposed scheme is verified by
simulations.

Index Terms—Canonical correlation analysis, model-order se-
lection, multiple data fields, principle component analysis, small
sample support.

I. INTRODUCTION

The analysis of association between more than two data sets
plays an important role in many applications, e.g. in array
signal processing, biomedicine, and climate science. A key
problem is to determine how many signals are common or
correlated across all data sets. In this paper, we consider this
model-order selection problem for a small number of samples,
which may even be smaller than the dimensions of each data
set.

In the literature, model-order selection for more than two
data sets has not yet received significant attention. Among
the very few published approaches are [1]–[3]. These three
papers assume that all signals that are correlated between any
two data sets are also correlated between all remaining data
sets. This assumption is not unrealistic in some applications.
For instance, in array signal processing, the same signals may
be received by multiple spatially separated arrays. However,
in many other applications, this assumption may be too re-
strictive. For instance, in brain imaging, the signals correlated
between two neurological modalities may be uncorrelated with
the other modalities [4], [5]. Moreover, among these three prior
works only [3] is able to work in the sample-poor regime.

In this paper, we present a detection scheme that (i) allows
signals correlated between two data sets to be uncorrelated
with the remaining data sets, thereby relaxing the assumption
made in [1]–[3]; and (ii) is capable of handling small sample-

support. To achieve these two goals, we propose a scheme
consisting of three steps:

1) A “max-min” detector, which was proposed recently in
[6], [7], is applied to determine the number of correlated
signals in all pairs of data sets.

2) For each pair of data sets, only the correlated signals are
estimated and kept.

3) A criterion based on the traditional information-theoretic
criterion for two data sets [8] is applied to identify the
number of signals that are correlated across all data sets.

II. PROBLEM FORMULATION

We observe M independent and identically distributed (i.i.d.)
sample vectors x(`)m ∈ Cn` , ` = 1, . . . ,L, m = 1, . . . ,M, that are
drawn from the L-channel measurement model

x(`) = A(`)s(`)+n(`).

The `th signal vector s(`) ∈ CQ` contains Q` independent
Gaussian random variables s(`)q , with zero mean and fixed but
unknown standard deviation σ

(`)
q ,q = 1, . . . ,Q`. The matrices

A(`) ∈ Cn`×Q` , ` = 1, . . . ,L, as well as the dimensions Q` are
fixed but unknown. Without loss of generality, A(`) may be
assumed to have full column-rank. The noise n(`) ∈ Cn` , ` =
1, . . . ,L, is independent of the signals and independent across
all L data sets, zero-mean Gaussian with unknown covariance
matrices Rn(`)n(`) . The cross-covariance matrix between two
signal vectors s(i) ∈ CQi and s( j) ∈ CQ j is (assuming here
w.l.o.g. that Qi ≤ Q j)

Rs(i)s( j) =
[
diag

(
ρ
(i, j)
1 σ

(i)
1 σ

( j)
1 , . . . ,ρ

(i, j)
Qi

σ
(i)
Qi

σ
( j)
Qi

)
,0Qi×(Q j−Qi)

]
where ρ

(i, j)
q is the unknown correlation coefficient between s(i)q

and s( j)
q . There are d(i, j) (which is a priori unknown) nonzero

correlation coefficients, hence d(i, j) correlated components
between s(i) and s( j). In this paper, we are interested in
determining the number of components, d, that are correlated
across all L data sets (or channels). This number d is less than
or equal to the number of signals correlated between pairs of
data sets. Figure 1 shows an example involving three data
sets, where there are two correlated components between any
pair of data sets, but only d = 1 component (shown in red)
correlated across all three data sets.
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The prior works [1]–[3] on model-order selection for multi-
ple data sets assumed that d = d(i, j), ∀i, j ∈ {1, . . . ,L}, i 6= j. In
this paper, we relax this assumption and allow cases such as
the one shown in Fig. 1, where components correlated between
one pair of data sets are uncorrelated with the remaining
data sets. However, we still have to make the simplifying
assumption that components correlated between one pair of
data sets are either (i) correlated with all other remaining data
sets or (ii) uncorrelated with all other remaining data sets.
Hence, in the example shown in Fig. 1 we would not allow
an additional nonzero correlation coefficient between s(2)2 and
s(3)2 if s(3)2 and s(1)2 remain uncorrelated.
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Fig. 1: Example for the correlation structure between three
data sets. The arrow “↔” indicates that two components are
correlated. The red arrow indicates the components that are
correlated across all three data sets.

III. PROPOSED DETECTION SCHEME

The d signals that are correlated across all data sets must
be a subset of those signals that are correlated between pairs
of data sets. In the following procedure, we first determine the
number of correlated signals in all pairs of data sets (Step 1),
and then extract only the correlated signals from the data sets
(Step 2). Finally, in Step 3, we use an information-theoretic
criterion to determine d.

A. Step 1: determine the number of correlated signals, d(i, j),
between each pair of data sets

(
x(i),x( j)

)
, i, j∈{1, . . . ,L}, i 6= j

The standard approach for determining the number of corre-
lated signals between two zero-mean random vectors x(i) and
x( j) uses canonical correlation analysis (CCA) [9]. In order to
estimate the canonical correlations, we collect M i.i.d. sample
pairs (x(i)m ,x( j)

m ),m = 1, . . . ,M, and arrange them in data matri-
ces X(i) = [x(i)1 , ...,x(i)M ] and X( j) = [x( j)

1 , ...,x( j)
M ]. From these we

compute the sample covariance matrices R̂i,i = X(i)[X(i)]H/M,
R̂ j, j = X( j)[X( j)]H/M, and R̂i, j = X(i)[X( j)]H/M. The sam-
ple canonical correlations 1 ≥ k̂(i, j)1 ≥ ·· · ≥ k̂(i, j)min(ni,n j)

≥ 0
are the singular values of the sample coherence matrix
R̂−1/2

i,i R̂i, jR̂
−H/2
j, j [10].

Based on the sample canonical correlations, there are two
main methods for determining d(i, j): hypothesis tests [11]
and information theoretic criteria (ITC) [8]. However, these
traditional methods are inapplicable in a small sample-size sce-
nario. This is because the sample canonical correlations can be

extremely misleading as they are substantially overestimated
[12]. Indeed, if M < ni+n j then ni+n j−M sample canonical
correlations are identically one regardless of the two-channel
model that generates the data samples.

To avoid this, a rank-reduction preprocessing may be ap-
plied before subjecting the two data sets to CCA. The most
commonly used preprocessing is PCA. The PCA proprocess-
ing for X(i) and X( j) proceeds as follows: We first determine
the singular value decompositions (SVDs) of X(i) = UiΣΣΣiVH

i
and X( j) = U jΣΣΣ jVH

j . Then the reduced-rank PCA descriptions
of X(i) and X( j) are

X̄(i) = Ui(:,1 : ri)ΣΣΣi(1 : ri,1 : ri)VH
i (:,1 : ri), (1)

X̄( j) = U j(:,1 : r j)ΣΣΣ j(1 : r j,1 : r j)VH
j (:,1 : r j), (2)

where Ui(:,1 : ri) and Vi(:,1 : ri) consist of the ri columns
associated with the largest ri singular values in ΣΣΣi, and ΣΣΣi(1 :
ri,1 : ri) is a submatrix of ΣΣΣi containing the first ri rows and
the first ri columns of ΣΣΣi. The other matrices are defined anal-
ogously. Now let ˆ̄Ri,i = X̄(i)[X̄(i)]H/M, ˆ̄R j, j = X̄( j)[X̄( j)]H/M,
and ˆ̄Ri, j = X̄(i)[X̄( j)]H/M be the sample covariance matrices
computed from the reduced-rank PCA descriptions. The corre-
sponding estimated canonical correlations k̂(i, j)n (ri,r j), which
depend on the PCA ranks, are the singular values of the

reduced-rank sample coherence matrix ˆ̄R
−1/2
i,i

ˆ̄Ri, j
ˆ̄R
−H/2
j, j .

Here, the pseudoinverse may be necessary because ˆ̄Ri,i and
ˆ̄R j, j may be rank deficient.

We need to determine not only the number of correlated
signals d(i, j), but also the ranks ri and r j for the PCA
preprocessing step. For this, the so-called “max-min” detector
was recently proposed in [6]. As far as we know, this is the
only technique capable of handling the combined PCA-CCA
setup in the sample-poor regime. The “max-min” detector is
a hypothesis test based on the reduced-rank Bartlett-Lawley
statistic, which in our case is

C(ri,r j,s) =−2

(
M− s−

ri + r j +1
2

+
s

∑
n=1

k̂−2
n (ri,r j)

)

× ln
min(ri,r j)

∏
n=s+1

(
1− k̂2

n(ri,r j)
)
.

As long as the PCA ranks ri and r j are small compared to
the number of samples M—which is the case when ri and
r j are smaller than rmax = min(ni,n j,bM/3c)—this statistic is
approximately χ2-distributed with 2(ri− s)(r j− s) degrees of
freedom. The “max-min” detector now chooses

d̂(i, j) = max
ri,r j

min
s

{
s : C(ri,r j,s)< T (ri,r j,s)

}
, (3)

where ri,r j ∈ {1, . . . ,rmax} and s ∈ {0, . . . ,min(ri,r j)− 1}.
The ri and r j that lead to d̂(i, j) are chosen to be the PCA
ranks. The min-operator chooses the smallest s such that the
statistic C(ri,r j,s) falls below the threshold T (ri,r j,s), which
is selected to ensure a given probability of false alarm. If there
is no such s, then the min-operator chooses s = min(ri,r j). A
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more detailed discussion and motivation for this approach can
be found in [7].

B. Step 2: keep the correlated signals for each pair of data
sets

(
x(i),x( j)

)
, i, j ∈ {1, . . . ,L}, i 6= j

The canonical vectors for a given pair of data sets (x(i),x( j))
are obtained as

w(i, j)
i =

(
F(i, j)(:,1 : d(i, j))

)H
R−1/2

i,i x(i),

w(i, j)
j =

(
G(i, j)(:,1 : d(i, j))

)H
R−1/2

j, j x( j),

where F(i, j)(:,1 : d(i, j)) and G(i, j)(:,1 : d(i, j)) contain the
first d(i, j) left and right singular vectors, respectively, of the
coherence matrix R−1/2

i,i Ri, jR
−H/2
j, j . It is well known for CCA-

based blind source separation [13] that the canonical vectors
w(i, j)

i and w(i, j)
j extract the d(i, j) signal components that are

correlated between x(i) and x( j) (up to some scaling factors).
In total, there are L̃ = 1

2 L(L− 1) possible distinct pairings
between x(i) and x( j) for i, j ∈ {1, . . . ,L}, i 6= j. Let us arrange
these pairs as follows:

w(`)
left =


w(1,`+1)

1 `= 1, . . . ,L−1

w(2,`−L+3)
2 `= L, . . . ,2L−3
...

...

w(L−1,L)
L−1 `= L̃

w(`)
right =


w(1,`+1)
`+1 `= 1, . . . ,L−1

w(2,`−L+3)
`−L+3 `= L, . . . ,2L−3
...

...

w(L−1,L)
L `= L̃

For the “left” data set, the subscript on wi matches the left
index of its superscript (i,·), and for the “right” data set, the
subscript matches the right index of its superscript. This means
that for a given `, w(`)

left and w(`)
right represent the “left” and

“right” canonical vectors corresponding to the same pair of
data sets.

Since we work with samples, we apply the procedure
outlined above to the reduced-rank data matrices X̄(i) and X̄( j)

obtained in (1) and (2), using the reduced-rank sample co-
variance matrices ˆ̄Ri,i,

ˆ̄Ri, j,
ˆ̄R j, j. This yields sample canonical

matrices W(`)
left and W(`)

right.

C. Step 3: estimate the number of signals, d, correlated across
all data sets

Because of the assumptions on correlation structure made
in the last paragraph of Section 2, the ranks of the cross-

covariance matrices E
{

w(i)
left

(
w( j)

right

)H
}

, for i = 1, . . . ,L− 1

and j = i+1, . . . ,L, are all equal to d. By restricting the index
of w( j)

right to be greater than the index of w(i)
left, we avoid using

two canonical vectors obtained from the same data set, e.g.
w(2,3)

2 (= w(L)
left) and w(1,2)

2 (= w(1)
right).

For each pair of data sets (w(i)
left,w

( j)
right), i < j, the informa-

tion-theoretic criterion for two data sets [8], which is a
function of the assumed number of correlated signals, s, is
(on average) minimized at s = d. This means that the sum
of these information-theoretic criteria over all distinct pairs
of data sets is also minimized at s = d. This motivates the
following selection rule:

d̂ = arg min
s=0,...,pmin

L̃−1

∑
i=1

L̃

∑
j=i+1

[
M ln

s

∏
n=1

(
1−
(

γ̂
(i, j)
n

)2
)

+ ln(M)s
(

p(i)+ p( j)− s
)]

, (4)

where γ̂
(i, j)
n denotes the nth largest sample canonical

correlation computed from W(i)
left and W( j)

right, pmin =

min(p(1), . . . , p(L̃)), with p(i) and p( j) representing the dimen-
sions of W(i)

left and W( j)
right, respectively. That is, p(i) and p( j) are

given by the number of correlated signals in the corresponding
pairs of data sets. The first term in the sum in (4) is the
log-likelihood function depending on the assumed number of
correlated signals, s, and the second term is the penalty term,
which depends on the degrees of freedom of the model and
number of samples.

IV. SIMULATION RESULTS

In this section, the performance of our proposed scheme
is examined. We consider a setting with five complex-
valued data sets, each of which has 9 signals with variances
[7,8,9,8,6,7,3,2,1]. The noise in each data set is generated
independently with unit variance and is either white or col-
ored. In the colored case, the auto-covariance matrix has el-
ements

[
Rn(`)n(`)

]
i, j = 0.4|i− j|, ` ∈ {1, . . . ,5}, i, j ∈ {1, . . . ,n`}.

The mixing matrices A(`), ` ∈ {1, . . . ,5} are randomly gener-
ated unitary matrices. The probability of false alarm for the
“max-min” detector in Step 1 has been set to 0.005.

We first consider an example with varying sample sizes and
fixed dimensions n1 = 30,n2 = 40,n3 = 50,n4 = 60,n5 = 70.
The signals between the five data sets are correlated with
correlation coefficients

ρρρ
(1,2) = [0.80,0.90,0.86,0.79,0.94,0.73,0, . . . ,0],

ρρρ
(1,3) = [0.78,0.85,0.92,0.85,0.80,0.78,0, . . . ,0],

ρρρ
(1,4) = [0.83,0.85,0.78,0.80,0.80,0.82,0, . . . ,0],

ρρρ
(1,5) = [0.78,0.91,0.75,0.90,0.90,0.80,0, . . . ,0],

ρρρ
(2,3) = [0.76,0.88,0.79,0.75,0.87,0.89,0, . . . ,0],

ρρρ
(2,4) = [0.86,0.88,0.92,0.83,0.81,0.80,0, . . . ,0],

ρρρ
(2,5) = [0.81,0.92,0.76,0.93,0.91,0.86,0, . . . ,0],

ρρρ
(3,4) = [0.84,0.85,0.79,0.77,0.91,0.82,0, . . . ,0],

ρρρ
(3,5) = [0.76,0.84,0.82,0.73,0.81,0.90,0, . . . ,0],

ρρρ
(4,5) = [0.80,0.90,0.89,0.73,0.89,0.84,0, . . . ,0].

Figure 2 shows simulation results for this scenario for white
and colored noise and for different number of samples M,
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Fig. 2: Detection performance for different sample sizes for
both white and colored noise. The number of correlated signals
is identical for each pair of data sets.

based on 500 independent Monte Carlo trials. This figure also
shows results for a competing approach, which is based on
the minimum description length (MDL) information-theoretic
criterion proposed in [2] for multiple data sets. Because [2]
is not designed to handle small sample support, we used
PCA preprocessing steps whose dimensions were determined
by the sample eigenvalue-based (SEV) technique [14]. The
correlation structure in our example satisfies the assumption
made in [2] that the number of correlated signals is identical
for each pair of data sets. Indeed, for white noise, our proposed
technique and the combination of SEV + MDL perform
comparably. However, for colored noise, the combination of
SEV + MDL does not work at all because SEV is not able
to separate the signal from the noise subspace. Our technique,
on the other hand, still performs well.

We now consider the same system for white noise, but
with varying dimensions and fixed sample size M = 100. The
signals are correlated with correlation coefficients

ρρρ
(1,2) = [0.80,0.90,0.86,0.79,0.00,0.00,0, . . . ,0],

ρρρ
(1,3) = [0.78,0.85,0.92,0.00,0.00,0.00,0, . . . ,0],

ρρρ
(1,4) = [0.83,0.85,0.78,0.00,0.00,0.00,0, . . . ,0],

ρρρ
(1,5) = [0.78,0.91,0.75,0.00,0.00,0.00,0, . . . ,0],

ρρρ
(2,3) = [0.76,0.88,0.79,0.00,0.87,0.00,0, . . . ,0],

ρρρ
(2,4) = [0.86,0.88,0.92,0.00,0.00,0.00,0, . . . ,0],

ρρρ
(2,5) = [0.81,0.92,0.76,0.00,0.00,0.00,0, . . . ,0],

ρρρ
(3,4) = [0.84,0.85,0.79,0.00,0.00,0.00,0, . . . ,0],

ρρρ
(3,5) = [0.76,0.84,0.82,0.00,0.00,0.90,0, . . . ,0],

ρρρ
(4,5) = [0.80,0.90,0.89,0.00,0.00,0.00,0, . . . ,0].

In this setup, only the first three signals in each data set are
correlated across all data sets, thus the assumption made in [2]
is violated. Indeed, Fig. 3 shows that the competing SEV +
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Fig. 3: Detection performance for different dimensions and
white noise. The number of correlated signals is not identical
for each pair of data sets.

MDL approach does not work for small data set dimensions,
whereas our proposed technique performs very well for all
dimensions.

V. CONCLUSIONS

We have presented an approach to estimate the number
of signals correlated across multiple data sets when there is
only small sample support available. As far as we know, no
alternative approach has been suggested in the literature so
far. Since this is a challenging problem, we have proposed
a suboptimal heuristic technique that decomposes the original
problem into several sequential problems. Nevertheless, Monte
Carlo simulations show promising performance.
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