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Abstract—In this paper some results on Schur transform are
reviewed to address the problem of one-dimensional discrete
phase retrieval. The goal is to provide a test whether a sequence of
input magnitude data gives a solution to one-dimensional discrete
phase retrieval problem. It has been previously shown that this
issue is related to the nonnegativity of trigonometric polynomials.
The proposed method is similar to the table procedure for
counting the multiplicities of zeros on unit circle. Examples and
numerical results are also provided to indicate that the problem
of one-dimensional discrete phase retrieval often does not have
a solution.

I. INTRODUCTION

In a number of different disciplines, including astronomy,
wave-front sensing, x-ray crystallography, and holography, one
encounters the phase-retrieval problem: Given the modulus of
the Fourier transform of an object, reconstruct the object or,
equivalently, reconstruct the Fourier phase [1]. This problem is
broadly studied based on various types of a priori information
about the underlying signal such as positivity and magnitude
information on the signal [2]. Algorithms for various mea-
surement schemes such as the method that exploits signal
sparsity have been suggested [3]. In such cases the solution of
phase retrieval problem is obtained based on supplementary
information which may come from additional assumptions.

Positive trigonometric polynomials have been intensively
used in many fields of signal processing such as spectral factor-
ization and convex optimization [4]. Recently some results in
the area bridge gaps between one-dimensional discrete phase
retrieval problem and input magnitude data [5], [6]. It has been
shown that the input magnitude data should satisfy certain
conditions in order to provide the solution for one-dimensional
discrete phase retrieval problem. These requirements ask for
the corresponding trigonometric polynomial to be positive
definite. Alternatively, given an arbitrary set of input mag-
nitude data may not provide a solution. Instead of looking
for additional assumptions or supplementary information to
solve the one-dimensional discrete phase retrieval problem,
the existence of the solution for the one-dimensional discrete
phase retrieval problem is first analyzed in these approaches.

An essential step in order to prove the existence of the
solution for the one-dimensional discrete phase retrieval prob-
lem is to determine whether a trigonometric polynomial is
nonnegative or not. The test table procedure may be used

to verify whether a polynomial is positive on unit circle
[7], but this way is not very simple to implement. Basically
this is a method for counting the multiplicities of zeros on
unit circle [8]. A similar procedure involves computation of
some determinants [9], which uses almost the same theoretical
results, but in a different presentation.

In the following we shall present a way one can test the
unit circle positivity of a polynomial, by using the Schur
transform. This method is similar to the table procedure for
counting the multiplicities of zeros on unit circle, but the
form discussed in this work is useful for our goal. We shall
recall few theoretical results related to this method. Examples
and experimental results will be focused on one-dimensional
discrete phase retrieval case.

The paper is organized as follows. First the one-dimensional
discrete phase retrieval problem is briefly reviewed (Sec-
tion II). Then some properties of nonnegative trigonometric
polynomials are presented (Section III). Theoretical results
useful to understand and follow the method based on Schur
transform are recalled, and the testing procedure is described
(Section IV). Examples (Section V) and numerical results
(Section VI) are also provided.

A. Nomenclature
z̄ complex conjugate of z

X(z) z-transform of x(n)
X(ω) Fourier transform of x(n)
X(k) DFT of x(n)
r̃(n) circular autocorrelation of x(n)
r̂(n) the folded of circular autocorrelation
Ŝ(z) z-transform of r̂(n)

Ŝ(ω) Fourier transform of r̂(n)

X̃(k) input magnitude data
In the following polynomials will be considered as sum of

powers of z−1.

II. THE ONE DIMENSIONAL DISCRETE PHASE RETRIEVAL
PROBLEM

Although certain constraints may be added according to
application, the main one dimensional discrete phase retrieval
problem can be stated as follows:
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Let X̃(k), k = 0, 1, . . . , N − 1, be a sequence of N
nonnegative numbers, which will be called the input magnitude
data. To solve the one-dimensional discrete phase retrieval
problem means to find x(n) a discrete signal of finite length
M (M ≤ N ) and for which its N -point Discrete Fourier
Transform (DFT):

X(k) =
N−1∑
n=0

x(n)e−j
2πkn
N , k = 0, 1, . . . , N − 1

satisfies
|X(k)| = X̃(k) (1)

for all k = 0, 1, . . . , N − 1.
We have [10]:
Theorem 1: The one-dimensional discrete phase retrieval

problem has a solution by method described below if and
only if the trigonometric polynomial Ŝ(ω) = F{r̂(n)} is
nonnegative:

Ŝ(ω) ≥ 0,∀ω ∈ [0, 2π]. (2)

To obtain a direct solution to one dimensional discrete phase
retrieval problem one may proceed as follows [6]:

1) Given X̃(k) the input magnitude data;
2) Compute the circular autocorrelation:

r̃(n) =
1

2M − 1

2M−2∑
k=0

|X̃(k)|2ej
2πkn
2M−1 ; (3)

3) Compute the folded circular autocorrelation r̂(n) using:

r̂(n) =

 r̃(n), n = 0, 1, 2, . . . ,M − 1
r̃(2M − 1 + n), n = −(M − 1), . . . ,−1
0, otherwise.

(4)
4) Verify whether Ŝ(ω) = F{r̂(n)} is a nonnegative

trigonometric polynomial;
a) If YES, we can proceed by solving the one dimen-

sional discrete phase retrieval problem; one may
use the zero allocation technique;

b) If NOT, the one dimensional discrete phase re-
trieval problem does not have a solution.

III. ABOUT NONNEGATIVE TRIGONOMETRIC
POLYNOMIALS

From X̃(k) one can obtain a closed form of Ŝ(z) and Ŝ(ω)
and we would like to verify whether Ŝ(ω) is positive for all
ω. To this end we can focus on Ŝ(z) to see whether Ŝ(z) is
nonnegative for all z with |z| = 1, i.e. Ŝ(z) is nonnegative on
unit circle.

Now we recall some properties of the polynomials which
are nonnegative on the unit circle [4]:

1) Positive polynomials on unit circle are either symmetric
or complex Hermitian or a positive constant;

2) Positive polynomials on unit circle contain two types of
zeros:
• zeros that are not on the unit circle and come in

pairs zk, 1/zk;

• zeros that are on the unit circle and have even
multiplicity.

It follows that a standard technique for testing the unit circle
positivity may consist of the following steps:

1) verify whether the polynomial Ŝ(z) is either symmetric
or complex Hermitian or a positive constant;

2) count the number of zeros of the polynomial Ŝ(z) inside
the unit disk;

3) count the multiplicities of zeros on unit circle of the
polynomial Ŝ(z), if they exist;

4) in addition Ŝ(1) or Ŝ(−1) must be positive.

IV. THE SCHUR TRANSFORM AND ZEROS MULTIPLICITIES

The most popular tool to count the number of zeros inside
the unit disk is based on the Schur transform.

For a polynomial of degree N in z−1 of the form [11]:

P (z) = a0 + a1z
−1 + · · ·+ aNz

−N ,

the reciprocal polynomial of P is defined by:

P ∗(z) = aN + aN−1z
−1 + · · ·+ a0z

−N ,

and its derivative is given by:

P ′(z) = Na0 + (N − 1)a1z
−1 + · · ·+ aN−1z

−N+1.

The Schur transform of the polynomial P of degree n is
the polynomial TP of degree N − 1 defined by

TP (z) = a0P (z)− aNP ∗(z) =
N−1∑
k=0

(a0ak − aNaN−k)z−k.

(5)
The iterated Schur transforms T 2P , T 3P , . . . , TnP are
defined by:

T kP = T (T k−1P ), k = 2, 3, . . . , N. (6)

We set γk = T kP (∞), for k = 1, 2, . . . , N .
We have the following results:
Theorem 2: (Schur-Cohn Algorithm) [11] Let P a poly-

nomial of degree N in z−1, P 6= 0. Then all zeros of P lie
inside the closed unit disk |z| < 1 if and only if γk > 0, for
all k = 1, 2, . . . , N .

Under the additional hypothesis that all γk 6= 0, the
algorithm can also be used to determine the exact number
of zeros inside the unit disk [9], [11]. Let Γk = γ1γ2 . . . γk,
for k = 1, 2, . . . , N .

Theorem 3: [11] If for the polynomial P (z), p of the
products Γk are negative and the remaining N−p are positive,
then P (z) has p zeros outside the unit disk, no zeros on the
unit circle and N − p zeros inside the unit disk.

Theorem 2 cannot be used if some γk are zero:
1) Such situation occurs when we have T k+1P = 0.
2) It may happen also that T k+1P 6= 0, but γk+1 =

T k+1P (∞) = 0.
To address these cases we have the following helpful

definition [9]:
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Definition 1: The polynomial P (z) = a0 + a1z
−1 + · · · +

aNz
−N is said to be self-inversive if ak = āN−ku, for all k,

where |u| = 1.
The first case (T k+1P = 0) appears generally whenever one

of the polynomials T kP turns out to be self-reciprocal [11].
This is in fact the situation of one-dimensional discrete phase
retrieval problem, when Ŝ(z) is self-reciprocal. To address this
issue, we may compute the number of zeros inside the unit
disk Ŝ(z) by focusing on its derivative of Ŝ′(z). Indeed, we
have the following theorem:

Theorem 4: [9] If a polynomial is self-inversive, then it
has as many zeros on the unit disk as the reciprocal of
its derivative. That is, a self-reciprocal polynomial and its
derivative have the same number of zeros outside the unit
disk.

For the second case, we may consider the next result:
Theorem 5: [9] If the coefficients of the polynomial

P (z) = a0 + a1z
−1 + · · ·+ aNz

−N

satisfy ak = āN−k|u|, for k = 1, q − 1, where |u| = 1 and
q ≤ N/2, then P (z) has for |z| ≥ 1 as many zeros as the
polynomial

p1(z) = B̄0p(z)−BN+qp
∗(z),

where b = (aN−q − uāq)/aN and

p(z) = (1 + 2b/|b|z−q)P (z) =

N+q∑
j=0

Bjz
−j .

To find the number of zeros on unit circle, we shall apply
the following result:

Theorem 6: [11] If for some k < N , Γk 6= 0, but T k+1P =
0, then P has N − k zeros on or symmetric in the unit circle
at the zeros of T kP (z). If p of the Γj , j = 1, 2, . . . , k are
negative, P has p additional zeros outside the unit circle and
k − p additional zeros inside the unit disk.

Using these results one can find the number of zeros
of the polynomial Ŝ(z) inside and outside the unit circle.
Consequently we can get the number of zeros on the unit
circle. To find the multiplicity of zeros on the unit circle
the resultant of the polynomial and its derivatives may be
computed as well. Another way is to implement the Euclid’s
algorithm for the polynomial and its derivatives. The procedure
is nicely described [7], [8] and will be taken into account
in the following by using Schur transform for testing the
existence of a solution for one-dimensional discrete phase
retrieval problem.

V. EXAMPLE

In the following we shall illustrate the use of Theorems 2
to 6 to test the positivity on unit circle of polynomial, and
in this way to determine the existence of a solution for one-
dimensional discrete phase retrieval problem.

Let N = 5 and

X̃(k) =

{
1 + α, k = 0;

1, k = 1, 2, 3, 4.
(7)

For different α, we get solution or no solution for the one-
dimensional discrete phase retrieval problem [5], [6].

Then

r̃(n) = DFT−1{|X̃(k)|2} =

{
1 + 1

5 (α2 + 2α), n = 0;

1
5 (α2 + 2α), n = 1, 4.

We have

r̂(n) =

{
1 + 1

5 (α2 + 2α), n = 0;

1
5 (α2 + 2α), n = ±1,±2.

(8)

Thus Ŝ(z) corresponding to (7) is given by:

Ŝ(z) = Z{r̂(n)} = 1 + 1
5 (α2 + 2α)+

2
5 (α2 + 2α) z+z

−1

2 + 2
5 (α2 + 2α) z

2+z−2

2 =

= 1
5 (α2 + 2α)

[
z2 + z−2 + z + z−1 + α2+2α+5

α2+2α

]
.

(9)

For the beginning, let us consider the polynomial:

P̂ (z) = 5Ŝ(z)
α2+2α = z2 + z−2 + z + z−1 + α2+2α+5

α2+2α =

z2 + z + β + z−1 + z−2,

where

β =
α2 + 2α+ 5

α2 + 2α
.

To have P̂ (−1) > 0, we need β > 0.
To test positivity on unit circle of Ŝ(z) given by (9), we

shall focus on the zeros of the polynomial

P (z) = 1 + z−1 + βz−2 + z−3 + z−4

to see whether P (z) has zeros with even or odd multiplicity on
unit circle. As we expected, P (z) is reciprocal and the Schur
transform has to be applied for its reciprocal derivative

P̃ ′(z) = 4 + 3z−1 + 2βz−2 + z−3.

We get:

T P̃ ′(z) = (8β − 3)z−2 + (12− 2β)z−1 + 15;

T 2P̃ ′(z) = [180− 30β − (8β − 3)(12− 2β)]z−1 + 225
−(8β − 3)2 = 4(4β − 9)[(β − 6)z−1 − 2(3 + 2β)];

T 3P̃ ′(z) = [225−(8β−3)2]2−[180−30β−(8β−3)(12−2β)]2;

γ1 = 15; γ2 = 225− (8β − 3)2 = 8(9− 4β)(3 + 2β);

γ3 = [225− (8β − 3)2]2−
[180− 30β − (8β − 3)(12− 2β)]2 =

240β(β + 4)(4β − 9)2;

Γ1 = 15; Γ2 = −120(4β − 9)(3 + 2β);

Γ3 = −28800(3 + 2β)β(β + 4)(4β − 9)3.
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It follows that:
1) When β ∈ (0, 9/4), P̃ ′(z) has 3 zeros inside the unit

disk and no one outside the unit disk. Thus all P (z) has
no zeros outside the unit disk. Since it is reciprocal, it
has no zeros inside the unit disk. It follows that P (z)
has all zeros on the unit circle and all zeros are single
(otherwise some γk of P̃ ′(z) should be zero).

2) When β > 9/4, then P̃ ′(z) has two zeros outside the
unit disk, thus P (z) has two zeros outside the unit disk
and two zeros inside the unit disk. Consequently P (z)
has no zeros on the unit circle. Thus P (z) is positive
for all |z| = 1.

3) When β = 9/4, we have Γ1 6= 0 and T 2P̃ ′(z) = 0,
thus for T 1P̃ ′(z) = 15 + 15/2z−1 + 15z−2 we have to
consider the derivative of g(z) = 1 + 1/2z−1 + z−2.
We have g′(z) = 1/2 + 2z−1 which has one zero inside
the unit circle. Since g′(z) has no zeros outside the unit
circle, then g(z) has no zeros inside and outside the
unit circle. Thus T 1P̃ ′(z) has 2 zeros on the unit circle
(z1,2 = −0.25± j0.9682), consequently P ′(z) has two
zeros on unit circle, (z1,2 = −0.25± j0.9682), one zero
inside the unit disk (z3 = −0.25) and no zeros outside
the unit disk. It means that P (z) has no zeros outside
the unit disk and it has all the zeros on the unit disk.
It can be easily verified that these zeros have double
multiplicity and they are the zeros of P ′(z).

Thus P(z) is nonnegative if β ≥ 9/4.
To conclude this section, the Schur transform approach

is difficult to utilize especially when we have to deal with
polynomials having multiple zeros. On the other hand, the
Schur transform helps us to verify the existence of a solution
for one-dimensional discrete phase retrieval problem.

The example discussed in this section suggests that in many
cases the input magnitude data may not provide a solution
to this problem. Moreover, the average and sometimes the
variation of the input magnitude data may affect the existence
of a solution to the one-dimensional discrete phase retrieval
problem.

VI. EXPERIMENTAL RESULTS

In the following we shall present the results of two sets
of simulations. The first set of simulations looks for the
percentage of polynomials having zeros on unit circle. The
second set of simulations considers polynomials obtained from
input magnitude data and we shall verify whether they are
nonnegative.

A. First set of simulations

We have generated 104 different polynomials for everyone
of the following classes:

1) polynomials with complex coefficients, where the real
part and the imaginary part of coefficients are uniform
distributed between [-0.5,0.5];

2) polynomials with complex coefficients, where the real
part and the imaginary part of coefficients are normal
distributed with zero mean and unit variance;

5 10 15 20 25 30 35 40 45 50 55
0

0.2

0.4

0.6

0.8

1

N

%

Fig. 1. Percentage of polynomials having zeros on unit circle: polynomials
with complex uniform distributed coefficients (+−), polynomials with com-
plex Gaussian distributed coefficients (◦−), derivatives of reciprocal polyno-
mials with complex uniform distributed coefficients ×−) and derivatives of
reciprocal polynomials with complex Gaussian distributed coefficients (∗−).

3) derivative of reciprocal polynomials, where the recip-
rocal polynomials coefficients are uniform distributed
between [-0.5,0.5];

4) derivative of reciprocal polynomials, where the recipro-
cal polynomials coefficients are normal distributed with
zero mean and unit variance.

Then we have computed the Schur transform for every
polynomial and after that we evaluate the percentage of
polynomials having zeros on unit circle. The outcomes are
presented in Figure 1 for every class. One can see that the
polynomials having zeros on unit circle are very seldom for
these four classes.

We recall that for a reciprocal polynomial the Schur trans-
form is zero, and to find the zeros on unit circle of a reciprocal
polynomial we have to apply the Schur transform to its
derivative (Section IV).

When computing the Schur transform it may happen that the
coefficients decrease very rapidly or sometimes increases quite
fast. Since only the sign of γk = T kP (∞) has importance for
our goal, we scale the coefficients; actually we proceed as it
is recommended in [8].

To conclude this experiment, the polynomials having zeros
on unit circle are very seldom. For our goal it is important to
note that reciprocal polynomials have seldom multiple zeros
on unit circle.

B. Second set of simulations

First we have generated 104 different input magnitude data,
every set being uniform distributed between [0;1], [0.5;1.5]
and [1;2] respectively. For every input magnitude data, we
have computed the circular autocorrelation, the folded of
circular autocorrelation and its z-transform Ŝ(z). Then we
have calculated the Schur transform of the derivative of Ŝ(z).
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Fig. 2. Number of nonnegative polynomials obtained from input magnitude
data with uniform distribution between [0;1] (+−), [0.5;1.5] ◦− and [1;2]
(∗−) respectively.

In case that the Schur transform of Ŝ′(z) is identically zero
for certain (k + 1), we restart the process with the derivative
of the last nonzero T k(Ŝ′(z)). Using this approach we have
found the number of nonnegative polynomials obtained from
these input magnitude data distributions. The outcomes are
presented in Figure 2.

Our remarks are as follows:
• If the mean of input magnitude data is rather close to

zero, there is likely to get an Ŝ(z) that is negative.
Since usually the distribution of input magnitude data is
biased towards zero, we can conclude that for large N
the discrete phase retrieval has very seldom solution.

• If the input magnitude data is severely biased towards
positive values, then almost all Ŝ(z) is nonnegative. In
such case one can find often a solution to one-dimensional
discrete phase retrieval.

Secondly we have generated 104 different input magnitude
data:
• the first class (I) has data obtained from modulus of a

Gaussian distribution with mean zero and unit variance;
• the second class (II) has data obtained from modulus of

a Gaussian distribution with mean zero and its standard
deviation is 5;

• the third class (III) has data obtained from modulus of a
Gaussian distribution with mean zero and unit variance
and then biased by 3.

We have proceeded as previously and the outcomes are
shown in Table I. For these distributions we performed other
series of simulations, and the behavior was almost the same,
with very seldom nonnegative polynomials Ŝ(z) for large N .

To conclude the one-dimensional discrete phase retrieval is
sensitive to the input magnitude data and we may have no
solution to this problem. Moreover, when the mean of input

N 5 15 25
Set I 1492 25 0
Set II 1511 33 1
Set III 1505 34 0

TABLE I
NUMBER OF NONNEGATIVE POLYNOMIALS OBTAINED FROM INPUT

MAGNITUDE DATA WITH POSITIVE GAUSSIAN DISTRIBUTION.

magnitude data is small, the existence of a solution for one-
dimensional discrete phase retrieval problem is not guaranteed.

VII. CONCLUSION

In this paper some results on Schur transform have been
reviewed to address the problem of one-dimensional discrete
phase retrieval. The goal was to test whether an arbitrary
sequence of input magnitude data may provide a solution to
one-dimensional discrete phase retrieval problem.

Simulations show that we cannot have always a solution.
For certain distributions of input magnitude data, which are
common used in measurements, we can expect some regular
behavior. This indicates that further work is needed to char-
acterize these distributions of sequences of input magnitude
data.

To conclude our achievements, before trying to solve one di-
mensional discrete phase retrieval problem, it is recommended
to compute the Schur transform approach of corresponding
trigonometric polynomial and to verify whether it is nonneg-
ative. Although this requires a supplementary work, it may
be useful since the one-dimensional discrete phase retrieval
problem may have no solution.
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