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Abstract—Our recent investigations of blind quantum source
separation and process tomography methods for Heisenberg-
coupled quantum bits (qubits) were focused on introducing a
new separation principle, based on output disentanglement. We
here extend them by proposing a more advanced implementation
of their cost function and optimization algorithm. This leads us
to move from a feedback to a feedforward adapting block, which
avoids potential issues related to feedback in quantum circuits.
The number of quantum source state preparations required to
blindly adapt the separating system is thus strongly decreased
(roughly from 10

7 to 10
4), yielding much faster adaptation.

I. PRIOR WORK AND PROBLEM STATEMENT

Within the information processing (IP) domain, various

fields developed very rapidly during the last decades. One of

these fields is Blind Source Separation (BSS), which led to

various classes of methods, including Independent Component

Analysis (ICA) [1]. Until recently, all BSS investigations were

performed in a “classical”, i.e. non-quantum, framework. An-

other growing field within the overall IP domain is Quantum

Information Processing (QIP) [8]. QIP is closely related to

Quantum Physics (QP). It uses abstract representations of

systems whose behavior is requested to obey the laws of QP.

This already made it possible to develop new and powerful

IP methods, which manipulate the states of so-called quantum

bits, or qubits.

In 2007, we bridged the gap between classical (B)SS and

QIP/QP in [2], by introducing a new field, Quantum Source

Separation (QSS) and especially its blind version (BQSS). The

QSS problem consists in restoring (the information contained

in) individual source quantum states, eventually using only the

mixtures (in SS terms [3]) of these states which result from

their undesired coupling. The blind version of this problem

corresponds to the case when the parameter values of the

mixing operator are initially unknown and are first estimated

by using only mixtures of source quantum states, i.e. without

knowing these source states (see [3] for (B)QSS applications).

A complete BQSS investigation consists of the definition

of the same items as in classical BSS, namely: (1) considered

mixing model, (2) proposed separating system structure, (3)

proposed separation principle (which is the counterpart of e.g.

forcing output independence in classical ICA) preferably with

an analysis of the resulting so-called “indeterminacies”, (4)

proposed separation criterion (see e.g. output mutual informa-

tion minimization in classical ICA), (5) proposed separation

algorithm (e.g. gradient-based minimization of cost function).

Using this approach, we initially developed a first class

of BQSS methods, which use a separation principle that has

some relationships with classical ICA, although these methods

address quantum sources. These methods were first introduced

in [2] and their extensions were e.g. detailed in [3] and [5].

More recently, in [4] and [6], we started to develop a new

class of BQSS methods, which use a different separation

principle, based on the disentanglement of output quantum

states of the separating system. Our investigations reported in

[4] and [6] cover all five items of the above-defined procedure

for developing BQSS methods. However, they required major

efforts for the first three of these items, so that we then

only resctricted ourselves to a simple approach for the cost

function and associated optimization algorithm. Therefore,

after summarizing the concepts from [4] and [6] which are

needed here (see Sections II and III), a first contribution in

this paper consists of an analysis of the properties of the above

algorithm (see Section IV). The limitations which thus appear

then motivate us to develop a modified version of this type of

approach, which is a major evolution since even the separating

system structure is thus changed and a much faster adaptation

method is introduced.

Besides, classical BSS is mainly based on the blind inver-

sion of the mixing model. BSS methods therefore typically

also perform a blind identification of the mixing model. In [7],

we started to develop similar considerations for the quantum

counterpart of the above system identification problem, i.e.

so-called Blind Quantum Process Tomography (BQPT). The

second main contribution of this new paper therefore consists

of an analysis of the capabilities of the proposed BQSS method

from a BQPT point of view (see Section V). Conclusions are

eventually drawn from this overall investigation in Section VI.

II. MIXING MODEL

As stated above, computations of the field of QIP use qubits

instead of classical bits [8]. In [4], we first detailed the required
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concepts for a single qubit and then presented the type of

coupling between two qubits that we consider and that defines

the “mixing model”, in (B)SS terms, of our investigation.

We hereafter summarize the major aspects of that discussion,

which are required in the current paper.

A qubit with index i considered at a given time t0 has

a quantum state. If this state is pure, it belongs to a two-

dimensional space Ei and may be expressed as

|ψi(t0)〉 = αi| + 〉 + βi| − 〉 (1)

in the basis of Ei defined by the two orthonormal vectors that

we hereafter denote |+ 〉 and |− 〉, whereas αi and βi are two

complex-valued coefficients constrained to meet the condition

|αi|
2 + |βi|

2 = 1 (2)

which expresses that the state |ψi(t0)〉 is normalized.

In the BQSS configuration studied in this paper, we first

consider a system composed of two qubits, called “qubit 1”

and “qubit 2” hereafter, at a given time t0. This system has

a quantum state. If this state is pure, it belongs to the four-

dimensional space E defined as the tensor product (denoted

⊗) of the spaces E1 and E2 respectively associated with qubits

1 and 2, i.e. E = E1⊗E2. We hereafter denote B+ the basis of

E composed of the four orthonormal vectors |++〉, |+−〉, |−
+〉, |−−〉, where e.g. |+−〉 is an abbreviation for |+〉⊗ |−〉,
with |+〉 corresponding to qubit 1 and |−〉 corresponding to

qubit 2. Any pure state of this two-qubit system may then be

expressed as

|ψ(t0)〉 = c1(t0)| + +〉 + c2(t0)| + −〉

+c3(t0)| − +〉 + c4(t0)| − −〉 (3)

and has unit norm. It may also be represented by the corre-

sponding vector of complex-valued components in basis B+,

which reads

C+(t0) = [c1(t0), c2(t0), c3(t0), c4(t0)]
T (4)

where T stands for transpose. In particular, we study the case

when the two qubits are independently initialized, with states

defined by (1) respectively with i = 1 and i = 2. We then

have

|ψ(t0)〉 = |ψ1(t0)〉 ⊗ |ψ2(t0)〉 (5)

= α1α2| + +〉 + α1β2| + −〉

+β1α2| − +〉 + β1β2| − −〉. (6)

Besides, we consider the case when the two qubits, which

correspond to two spins 1/2, have undesired coupling after

they have been initialized according to (5). The considered

coupling is based on the Heisenberg model with a cylindrical-

symmetry axis collinear to Oz, the direction common to the

applied magnetic field and to our first chosen quantization axis.

This coupling may be represented as

C+(t) = MC+(t0) (7)

where C+(t) is the counterpart of (4) at time t and defines

the coupled (or “mixed”, in BSS terms) state |ψ(t)〉 of the

two-qubit system at that time. In basis B+, the evolution of

the system’s quantum state from t0 to t is thus represented by

the matrix M of (7). Our previous calculations show that, for

the considered type of coupling

M= QDQ−1 = QDQ (8)

with

Q = Q−1 =









1 0 0 0

0 1√
2

1√
2

0

0 1√
2

− 1√
2

0

0 0 0 1









(9)

and D equal to






e−iω1,1(t−t0) 0 0 0

0 e−iω1,0(t−t0) 0 0

0 0 e−iω0,0(t−t0) 0

0 0 0 e−iω1,−1(t−t0)







(10)

with i2 = −1. The four real (angular) frequencies ω1,1 to

ω1,−1 in (10) depend on the physical setup and their values

are unknown in practice.

III. PREVIOUS BQSS METHOD

In [4] and [6], to uncouple qubit states mixed according to

the above model, we introduced a BQSS method that we are

going to further analyze and modify in this paper. Therefore,

we first summarize its main features hereafter.

A. Inverting block of separating system

The inverting block of the separating system is the part of

this system which is to be used eventually (i.e. after this block

has been adapted, as explained below) to derive the output

quantum state |Φ〉 of this system from its input quantum state,

which is the above-defined coupled state |ψ(t)〉. That block

appears in the upper right part of Fig. 1 and is used in both

our previous BQSS method described here and in its extension

proposed in Section IV. It uses quantum processing means

only. The output quantum state of that block and therefore of

our overall separating system is denoted as

|Φ〉 = c1| + +〉 + c2| + −〉 + c3| − +〉 + c4| − −〉. (11)

It may also be represented by the corresponding vector of

components of |Φ〉 in basis B+, denoted as

C = [c1, c2, c3, c4]
T . (12)

We then have

C = UC+(t) (13)

where U defines the unitary quantum-processing operator

applied by our separating system to its input C+(t). As

justified below, we choose this operator U to belong to the

class defined by

U = QD̃Q (14)

with D̃ =









eiγ1 0 0 0

0 eiγ2 0 0

0 0 eiγ3 0

0 0 0 eiγ4









(15)
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where γ1 to γ4 are free real-valued parameters.

B. Adapting block of separating system

The above type of inverting block was selected because

it can perfectly restore the quantum source state |ψ(t0)〉 for

adequate values of its free parameters γ1 to γ4: setting them so

that D̃ = D−1 yields U = M−1, which results in C = C+(t0)
and |Φ〉 = |ψ(t0)〉. However, the condition D̃ = D−1 cannot

be used as a practical procedure for directly assigning D̃,

because D is unknown. Instead, a procedure for adapting the

parameters γ1 to γ4 of D̃ by using only one of several values

of the available mixed state |ψ(t)〉 is therefore required, which

corresponds to a blind (quantum) source separation problem.

Briefly, the BQSS method that we developed to this end

in [4] and [6] uses the output disentanglement separation

principle that we introduced in these papers, which is based

on the concept of quantum state entanglement. From this

principle, we then derived a two-step adaptation procedure,

where each step consists of the global minimization of a cost

function expressed with respect to classical-form quantities,

namely probabilities of discrete outcomes of spin component

measurements performed at the output of the inverting block.

The first cost function is defined as

Fz =

Nz
∑

n=1

|fz(n)|p (16)

with

fz(n) = P1z(n)P4z(n) − P2z(n)P3z(n) (17)

and e.g. p = 1 or 2. In these expressions, P1z(n) to P4z(n)
are the above-mentioned probabilities, corresponding to the

case when the considered spin components are measured along

the above-defined axis Oz (we detail them in Section IV-A).

Besides, the cost function in (16) involves Nz ≥ 2 (non-

redundant) source states, indexed by n. Each of these states

is defined by (6) with corresponding parameter values α1(n)
to β2(n). The first step of the proposed procedure consists

in performing a sweep on one of the parameters γ2 and γ3,

while the other one, as well as γ1 and γ4, are constant. This

procedure computes the corresponding (estimated) values of

Fz and it eventually keeps the value of the tuned parameter

γ2 or γ3 which minimizes Fz . It then freezes γ2 and γ3.

The second stage of the proposed procedure then performs a

sweep on γ1 or γ4, in order to minimize a cost function which

is similar to the above one, but which uses measurements of

spins components along an axis Ox orthogonal to Oz.

IV. NEW BQSS METHOD

A. Motivations

For any output two-spin quantum state defined by (11) in

the basis B+ associated with the Oz axis, when measuring the

components of these two spins along Oz, the four possible

results are (+ 1

2
,+ 1

2
), (+ 1

2
,− 1

2
), (− 1

2
,+ 1

2
) and (− 1

2
,− 1

2
) in

normalized units. Moreover, their respective probabilities are

P1z = |c1|
2, P2z = |c2|

2, P3z = |c3|
2, P4z = |c4|

2. (18)

The associated quantities which are available in practice and

actually used in the cost function (16)-(17) are estimates of the

above probabilities. These estimates are obtained by using our

RWR procedure [4], [6]. For each source state (6) and set of

separating system parameters γ1 to γ4, this procedure consists

in first Repeatedly Writing (i.e. preparing) the considered

source state and Reading (i.e. performing the above type of

measurements for) the corresponding output of our separating

system, and then computing the sample frequencies of all

four possible measurement outcomes, which yields the above-

mentioned four probability estimates.

The adaptation of γ2 (or γ3) is thus cumbersome, because

it requires many Write/Read (WR) steps, i.e. typically 2×107

if one uses 104 such steps to accurately estimate each set of

probabilities P1z(n) to P4z(n) and this is repeated for 103

values of γ2 when tuning it and using Nz = 2 source states

in the cost function (16). We hereafter introduce a method for

reducing the complexity of the adaptation procedure.

B. Proposed method

As in all the BQSS methods that we proposed so far, we

here consider adaptation methods which convert quantum data

into classical-form data at a certain stage of the processing

chain, using our RWR procedure. For our methods based

on the disentanglement separation principle, this should be

done for at least 2 quantum states. Such methods therefore

typically require at least 2 × 104 WR steps, as shown by

the above discussion. The much higher complexity reported

in Section IV-A for our previous BQSS method results from

the fact that, in that method, these measurements concern

states at the output of the inverting block, which therefore e.g.

depend on the value of the tuned parameter γ2, so that these

measurements must be repeated for each of the typically 103

values of γ2 used in the sweep performed for this parameter,

thus leading to a factor 103 in the complexity of the adaptation

procedure. This suggests us to try and avoid this complexity

increase by performing measurements only once, for states

which do not depend on γ2, i.e. (i) for the state |ψ(t)〉 at the

input of the inverting block and/or (ii) for the state obtained

by only transferring another instance1 of |ψ(t)〉 through the

first sub-block Q of the inverting block: as shown by (13)-

(14) and Fig. 1, the overall inverting block may be seen as the

cascade of three sub-blocks (quantum gates) whose behaviors

are respectively defined by the matrices Q, D̃ and Q. Only

the states available before sub-block D̃ do not depend on γ2.

Let us first consider the two-spin quantum state |ψ(t)〉,
defined by (3) with all coefficients cj(t0) replaced by cj(t).
Quantum Physics properties already used in (18) at the output

of the inverting block here tell us that, when measuring the

components along the Oz axis, of both spins, at the input of

the inverting block, the four possible results are (+ 1

2
,+ 1

2
),

(+ 1

2
,− 1

2
), (− 1

2
,+ 1

2
) and (− 1

2
,− 1

2
) in normalized units, and

1Providing a quantum state |ψ(t)〉 to several sub-systems requires a separate
instance of that state (obtained with a separate preparation) for each sub-
system [4], due to the no-cloning quantum theorem [8].
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that the probabilities of these values are respectively the

squared moduli of c1(t) to c4(t), i.e.

p1z = |c1(t)|
2, p2z = |c2(t)|

2, (19)

p3z = |c3(t)|
2, p4z = |c4(t)|

2. (20)

Similarly, let us now consider a couple of measurements

performed along axis Oz for the two-qubit quantum state

available at the output of the first sub-block Q of the inverting

block. This again yields the above four possible results, but

now with probabilities equal to the squared moduli of the

elements of the vector which represents that state, which is

equal to QC+(t), as shown by (13)-(14). Using (9), this yields

P1z(Q) = |c1(t)|
2, P2z(Q) =

1

2
|c2(t) + c3(t)|

2, (21)

P4z(Q) = |c4(t)|
2, P3z(Q) =

1

2
|c2(t) − c3(t)|

2. (22)

We therefore keep the cost function defined by (16)-(18)

and we investigate whether it can be expressed only with

respect to the probabilities defined in (19)-(20) and/or (21)-

(22) and with respect to γ1 to γ4. It is not guaranteed that

this is possible, because our previous BQSS method looses

the phase information about complex-valued state coefficients

at the output of the inverting block only, as shown by (18),

whereas the new method that we are trying to build at this

stage would loose phase information already at the input of

that block and/or after its first Q sub-block, as shown by

(19)-(22), and these two approaches are not guaranteed to be

equivalent.

The relevance of the proposed approach must therefore be

analyzed, by deriving the expression of each term fz(n) of

the cost function with respect to γ1 to γ4, to determine if the

other quantities involved in this expression are restricted to

the above probabilities. To this end, one first expresses the

output state coefficients cj by combining (12)-(15), (9) and

the counterpart of (4) at time t. One then derives the squared

moduli of these coefficients cj and inserts them in (18) and

(17). Tedious manipulations eventually yield

fz(n) = |c1(t)|
2|c4(t)|

2 −
1

16
|c2(t) + c3(t)|

4

−
1

16
|c2(t) − c3(t)|

4

+
1

8
[(|c2(t)|

2 − |c3(t)|
2)2 − 4[ℑ(c2(t)c3(t)

∗)]2]

× cos(2(γ3 − γ2))

−
1

2
(|c2(t)|

2 − |c3(t)|
2)ℑ(c2(t)c3(t)

∗)

× sin(2(γ3 − γ2)) (23)

where ℑ(.) stands for imaginary part, ∗ represents complex

conjugate and all coefficients cj(t) correspond to the state

|ψ(t)〉 obtained for the source state with index n, but this

index is here omitted for the sake of simplicity.

Estimating the probabilities (19)-(22) by means of the

above-defined types of measurements therefore does not com-

pletely make it possible to derive an estimate of the cost

function term in (23), for given γ1 to γ4: these measurements

do not provide the required estimate of ℑ(c2(t)c3(t)
∗). We

solve this problem by extending this approach as follows. It

may easily be shown that

ℑ(c2(t)c3(t)
∗) =

1

2

(

|c2(t) + ic3(t)|
2 − |c2(t)|

2 − |c3(t)|
2
)

.

(24)

We therefore introduce a quantum gate which is the partly-

imaginary counterpart of the gate defined above by (9), i.e. a

gate whose operation is defined by the matrix

Qi =









1 0 0 0

0 1√
2

i 1√
2

0

0 1√
2

−i 1√
2

0

0 0 0 1









. (25)

This matrix is unitary and therefore implementable in the

standard QIP framework (see p. 213 and pp. 188-203 of [8]).

In the same way as for gate Q, feeding gate Qi with another

instance of the state |ψ(t)〉 and applying our RWR procedure

to a couple of measurements performed along axis Oz at the

output of that gate Qi yields estimates of the probabilities

P1z(Qi) = |c1(t)|
2, P2z(Qi) =

1

2
|c2(t) + ic3(t)|

2, (26)

P4z(Qi) = |c4(t)|
2, P3z(Qi) =

1

2
|c2(t) − ic3(t)|

2. (27)

Using the (estimated) probabilities of (26)-(27) in addition

to those of (19)-(22) therefore completely makes it possible

to derive an estimate of the cost function term in (23), for

given γ1 to γ4. This opens the way to various algorithms

for adapting γ2 (or γ3). The simplest algorithm consists in

performing a sweep on the value of γ2 and keeping the value

which minimizes Fz . Each value of Fz is here derived from

(23) and (16) by using classical processing means, as shown

in the lower part of Fig. 1.

The adaptation of γ1 (or γ4) should then be addressed by

transposing all the approach that we introduced in this paper

to the second cost function mentioned in Section III-B. This

investigation is skipped here, due to space limitations.

The overall separating system structure thus obtained is

shown in Fig. 1. Both its inverting and adapting blocks have a

feedforward structure, i.e. with a data flow from the mixed

state |ψ(t)〉 to quantities derived from it. This is a major

difference as compared with the feedback structure used in

the adapting block of our previous method of [4] and [6],

which required special care since at least part of the considered

data have a quantum form (see [8] p. 23 concerning feedback

in quantum circuits). Once γ1 to γ4 have been obtained in

classical form in the adapting block, they are “downloaded”

into the quantum sub-block D̃ of the inverting block, i.e. they

are e.g. used to generate voltages which control the parameters

of that sub-block D̃.

V. BLIND QUANTUM PROCESS TOMOGRAPHY

As explained in Section I, we here analyze the capabilities

of the method proposed in Section IV in terms of BQPT, i.e.
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| φ >D Q
~

processing

quantum

processing

classical

Q| (t  )>ψ
0

M | (t)>ψ

separating stagemixing stage

quantumclassicalquantum

Fig. 1. Mixing stage and proposed separating system: inverting block (upper right part of figure) and adapting block (lower part) including quantum processing,
quantum/classical conversion (measurements) and classical processing. Each quantum state is used only once (dashed lines): see Section IV-B (no-cloning).

its ability to blindly identify the mixing model (8)-(10). More

precisely, in [7] we explained that its unknown parameters ω1,1

to ω1,−1 in (10) read

ω1,1 =
1

h̄

[

GB −
Jz

2

]

, ω1,0 =
1

h̄

[

−Jxy +
Jz

2

]

, (28)

ω0,0 =
1

h̄

[

Jxy +
Jz

2

]

, ω1,−1 =
1

h̄

[

−GB −
Jz

2

]

(29)

where all quantities are physical parameters defined in [7]

and only Jxy and Jz have unknown values, which should be

blindly estimated.

Although the method of Section IV is quite different from

the method of [6] summarized in Section III, both methods

adapt γ1 to γ4 so as to reach the global minimum of the

same cost function (16) and of the same second cost function

outlined in Sections III and IV. Moreover, for the consid-

ered coupling model, this minimization may be shown to

be equivalent to the disentanglement of the output states of

the separating system, for the considered source states. The

investigation reported in [7] then entails that, when applying

the new method of Section IV, γ1 to γ4 are tuned to final

values which are such that

Jxy =
h̄

2(t− t0)
(γ3 − γ2 −mπ) (30)

Jz =
h̄

2(t− t0)
(γ2 + γ3 − γ1 − γ4 + 2kπ −mπ) (31)

where k and m are integers. This yields estimates of Jxy and

Jz (up to the indeterminacies due to 2kπ and mπ).

VI. CONCLUSION

In this paper, we further extended the new class of BQSS

methods that we recently introduced in [4] and [6], by

proposing a more advanced implementation based on the

considered separation principle. This led us to modify the

structure of the separating system, moving from a feedback to

a feedforward adapting block, which avoids potential issues

related to feedback in quantum circuits. The overall approach

thus obtained yields a major improvement for the adaptation

of the separating system parameters: the number of quantum

source state preparations required during adaptation is roughly

reduced from 107 to 104. We also derived an associated BQPT

method. Since the physical implementation of qubits is only

an emerging topic today, our future works will especially

consist in developing a software package including simulated

Heisenberg-coupled qubits and BQSS and BQPT methods, to

assess their numerical performance.
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