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Abstract—Automatic classification of human epithelial type-2
(HEp-2) cells can improve the diagnostic process of autoimmune
diseases (ADs) in terms of lower cost, faster response, and better
repeatability. However, most of the proposed methods for classi-
fication of HEp-2 cells suffer from several constraints including
tedious parameter tuning, massive memory requirement, and
high computational costs. We propose an adaptive distributed
dictionary learning (ADDL) method where the dictionary learn-
ing problem is reformulated as a distributed learning task. With
the help of this approach, we develop an automatic and robust
method that effectively handles the complexity of the problem
in terms of memory and computational cost and also obtains
superior classification accuracy.

I. INTRODUCTION

Autoimmune diseases (ADs) are among the top mortality
causes according to the American Autoimmune Related Dis-
eases Association (AARDA). Early diagnosis of ADs plays
a crucial role in the treatment process of these diseases. To
diagnose ADs, high resolution imaging of the affected organ
through indirect immunofluorescence (IIF) is needed. IIF
captures images of human epithelial type-2 (HEp-2) cells and
antinuclear antibodies (ANA), which is a type of autoantibody
binding to the contents of the cell nucleus, and is considered
as a hallmark of ADs. In the cells containing ANAs, the
antibodies bound to the nuclei have different patterns that can
be captured and visualized via microscope imaging. Catego-
rizing the patterns of the HEp-2 cell images can be used to
distinguish the phase and severity of ADs. Computer aided
diagnosis (CAD) systems for automatic classification of HEp-
2 cells have attracted much interest for AD diagnosis. These
systems can be used to reduce the cost and time of diagnosis
and to provide repeatability across different physicians.

A publicly available dataset for HEp-2 cell classification
contest was released at the 2013 International Conference on
Image Processing, to be referred as the ICIP2013 dataset in
this paper. Two different tasks have been set up for this bench-
marking dataset [1]. The first task is cell level classification
where each cell is classified independently without considering
the neighboring cells in the specimen image. In the second
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task, the specimen images are classified by considering all the
cells in the image. Here, it is assumed that most of the cells
in a specimen image belong to one of the classes [1].

Sparse coding and dictionary learning (DL) methods have been
rapidly increasing in recent years in different image processing
domains. These methods are used by several researchers for
solving the HEp-2 cell classification problem [2]–[5]. In
these methods, a variety of features including local binary
patterns (LBPs) [6], scale-invariant feature transform (SIFT)
and morphological features are extracted from the cells. Then
a Bag of Words (BoW) [7] model or DL scheme [8] is applied
to represent the input feature vectors for a classifier.

One of the critical parameters in DL and BoW methods is
the number of atoms in the dictionary. The higher number of
atoms compared to the dimension of the feature vectors results
in an over complete dictionary which is biologically inspired
and can provide suitable sparse codes. However, learning these
types of dictionaries is computationally expensive and requires
a large memory. Additionally, selection of parameters (includ-
ing the size and number of patches, smoothing parameters,
and the number of histogram bins) can affect the performance
of the method. Parameter tuning is complex and tedious,
leading to massive memory and computational requirements
especially when the number of training images increases. The
complexities of the above methods make them impractical for
realizing real time systems to be used by physicians/clinicians.

In this paper, we propose an adaptive distributed dictionary
learning (ADDL) method which tackles the HEp-2 cell clas-
sification problem in a computationally efficient and less
memory intensive way compared to the other methods. To
the best of our knowledge, this is the first time that an
adaptive distributed dictionary learning method has been suc-
cessfully implemented for image classification. In this method,
the dictionary matrix and the coding vector are partitioned
into N blocks where each block is associated with a sub-
dictionary and a sub-vector. Considering these blocks, we form
a connected network of N nodes where each node updates
its own sub-dictionary. We reformulate the dictionary learning
problem as a distributed learning task over the network and
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Fig. 1. The proposed ADDL framework.

use the diffusion adaptation strategy to solve this distributed
problem [9]. Moreover, we propose to combine the informa-
tion of neighboring nodes in an adaptive way to obtain superior
performance.

II. OVERVIEW OF THE ADDL METHOD

In this paper we extract SURF (speeded-up robust features)
and SIFT image features to use them as inputs for the
distributed dictionary learning problem. The learned dictionary
is then used for HEp-2 cell classification where the sparse
codes of image patches are combined with spatial pyramid
matching (SPM) [10]. In this method, each input image is
divided into 1, 4 and 16 regions within three pyramid layers
and max-pooling is applied on the sparse codes of each region
to obtain the final feature vector. Then, a SVM is learned to
classify the cell images. Fig. 1 represents the proposed ADDL
method.

A. Dictionary Learning

By extracting the features of each image patch the input feature
vector F t for the DL algorithm is calculated. The DL problem
can then be formulated as:

min
zt,D

(‖F t −Dzt‖2 + λ‖zt‖1 +
β

2
‖zt‖22) (1)

where F t is the M×1 input feature vector at time t, D is an
M×K dictionary matrix, zt is the K×1 sparse code vector,
and λ and β are the adjustable penalty (regularization) terms.
To solve the optimization problem in (1), we introduce the
distributed learning method.

B. Distributed Dictionary Learning

To learn the dictionary in a distributed manner we adopt the
recently proposed approach presented in [11]. In this method,
the dictionary matrixD and the coding vector z are partitioned
to block forms:

D = [D1 . . .DN ], z = col{z1, . . . ,zN} (2)

Fig. 2. Sample of a connected network where each agent k is responsible
for learning a sub-dictionary Dk .

where Dk is a sub-dictionary matrix of size M×Nk and zk is
a sub-vector of size Nk×1. Moreover, the summation over the
sizes of sub-dictionaries is equal to the total size of dictionary:

N1 + · · ·+NN = K (3)

Now we form a connected network of N agents where each
agent k in the network is responsible to update its own sub-
dictionary Dk that is distributed over the network. As shown
in Fig. 2, each agent in the network has a number of neighbor-
ing agents that it can interact with. Moreover, the input features
F t can be only presented to a subset of agents represented by
NI . Our experiments show that providing the input data only
to a subset of agents is computationally efficient while having
comparable performance with other methods. Considering (2)
in the DL problem we can reformulate (1) as:

min
zt,D

(‖F t −
N∑
k=1

Dkzk,t‖2+
N∑
k=1

(λ‖zk,t‖1+
β

2
‖zk,t‖22)) (4)

To solve the optimization problem of (4) in a distributed
manner, the cost function should have a “sum-of-costs” form.
Specifically, in order to apply distributed methods to tackle the
problem at hand, the global cost function of the optimization
problem, Jglob(ω), should be the aggregation of individual
cost functions of the agents Jk(ω):

Jglob(ω) =
N∑
k=1

Jk(ω) (5)

It has been shown in [11] that the problem in (4) does
not follow the form in (5) as it is “cost-of-sums” and not
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“sum-of-costs”. Therefore, it is not feasible to use distributed
techniques for solving the problem in (4) directly. However,
the dual problem of (4) has a distributed form similar to (5) and
the optimal primal variables {Dk} and zt can be recovered
from the solution of the dual problem (see (14) and (15)).
According to [11], the dual problem can be formulated as:

min
ν

(−g(ν,F t)) = (‖ν‖22 − ν
TF t +

N∑
k=1

Sλ
β

(
DT
k ν

β
)) (6)

where ν is the auxiliary vector variable of size M×1 in the
dual problem, and Sλ

β
(x) is a function defined as:

Sλ
β

(x) , −β
2
· ‖Tλ

β
(x)‖2

2
− λ · ‖Tλ

β
(x)‖2

1
+ β · xTTλ

β
(x) (7)

Here Tγ(x) is the entry-wise soft-thresholding operator on
vector x that can be formulated for the nth element as:

[Tγ(x)]n , (|[x]n| − γ)+sgn([x]n) (8)

where (x)+ = max(x, 0) and sgn(x) represents the signum
function. We can consider the dual function in (6) as the global
cost function. Therefore, the individual cost function of each
node k can be defined as [11]:

Jk(ν;F t) ,

 −ν
TF t
|NI | + 1

N ‖ν‖
2
2 + Sλ

β
(
DT
k ν
β ), k ∈ NI

1
N ‖ν‖

2
2 + Sλ

β
(
DT
k ν
β ), k /∈ NI

(9)
where |NI | is the cardinality of NI .

It should be noted that the summation over the individual cost
functions Jk(ν;F t) is equal to the cost function in (6) and
the dual problem for estimating the optimal solution νo can
be rewritten as:

νo = min
ν

N∑
k=1

Jk(ν;F t) (10)

Therefore, according to (5) the dual problem can be solved
using distributed learning strategies and the optimal primal
variables {Dk} and zt can be recovered afterwards (see (14)
and (15)).

Here we use diffusion adaptation strategy as a distributed
learning method [9], [12]. It has been shown that the diffusion
strategy gives superior performance and stability compared to
the other methods while being robust, scalable, and capable
of real time adaptation and learning [9]. The details of the
diffusion strategy adapted to solve the distributed optimization
problem in (10) is explained in the next sub-section.

C. Diffusion Adaptation Method

In the diffusion adaptation strategy, there is a network of N
nodes where each node k is connected to its neighboring nodes
represented by Nk shown in Fig. 2. Each node can share
information with and receive information from its neighbors.
Each node also has an individual cost function to minimize and
the global cost function of the network is the aggregation of all

these individual costs similar to (5). The diffusion adaptation
method consists of two steps: the adaptation step and the
combination step. In the adaptation step, each node k updates
its own estimate for the optimization problem via a gradient
descent step. This estimate is considered as an intermediate
estimate ψk,i, which is further updated in the combination
step. During the combination step, the neighboring nodes
share their intermediate estimates. Then, each node k updates
its own final estimate, νk,i, by combining the intermediate
estimates received from the neighbors in the ith time instant
[9]. Thus, the diffusion adaptation strategy can be reformulated
as:

ψk,i = νk,i−1 − µ∇νJk(νk,i−1;F t) (11)

νk,i =
∑
`∈Nk

a`k(i)ψ`,i (12)

where νk,i is the estimate of node k of the optimal solution
νot at iteration i, ψk,i is the intermediate estimate, and µ > 0
is the updating step-size selected to be sufficiently small. The
weights a`k(i) in (12) are called combination weights and each
a`k(i) is the weight that node k assigns to the information
received from node ` at time instant i. The combination
weights a`k(i) must satisfy:∑

`∈Nk

a`k(i) = 1, a`k(i) = 0 if ` /∈ Nk (13)

It should be noted that there are several ways to design the
combination weights. It has been shown in the literature that
selection of these weights can have a significant impact on the
algorithm performance [13], [14]. In section II-D we discuss
the role of these weights and introduce an adaptive method to
learn the weights over time.

After the optimal dual variable νot is estimated by (11)
and (12), the optimal primal variables of the DL problem,
including the sparse codes zot and the sub-dictionaries Dk,t,
can be obtained by [11]:

zok,t = arg max
zk

[(DT
k ν

o
t )
T
zk − (λ‖zk‖1 +

β

2
‖zk‖22)] (14)

Dk,t = ΠDk(Dk,t−1 + µ · νot zok,t) (15)

where ΠDk [·] is the projection operator onto the constraint
set Dk. In the next section, we continue to formulate our
ADDL method by proposing an adaptive approach to design
the combination weights in (12).

D. Selection of the Combination Weights

Selection of the combination weights in (12) can affect
the performance of the network in solving the optimization
problem. Here, we propose to use an adaptive approach for
selecting the weights to address the DL task. In the previ-
ously proposed distributed dictionary learning methods, the
combination weights are selected in a static manner where the
nodes allocate the same weights to their neighbors without
considering the reliability of the received information [11]. For
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instance, where uniform weights are selected, the combination
step (12) is simply an averaging over all the estimates:

a`k =
1

|Nk|
if ` ∈ Nk (Uniform combination weights) (16)

By designing the combination weights in a uniform manner
the nodes assign the same weight to all their neighbors without
considering the reliability of the information they receive from
them. It has been shown that it is important to design the
weights such that the nodes can learn about the reliability of
the information received from their neighbors over time [13],
[14]. Therefore, the combination weights must be designed in
a manner that helps the nodes to ignore misleading informa-
tion and cooperate only with neighbors that share the same
objective. In order to do so, we follow the same approach
proposed in [15] which minimizes the instantaneous mean-
square deviation (MSD) of the network defined as:

MSD(i) ,
1

N

N∑
k=1

E‖ν̃k(i)‖2, (17)

where ν̃k(i) , νot − νk(i) is the error vector at node k at
iteration i. Then, the combination coefficients a`k(i) can be
obtained by solving the optimization problem:

min
{a`k(i)}

MSD(i) =
1

N

N∑
k=1

E‖ν̃k(i)‖2 (18)

It is shown in [15] that the optimal solution can be approxi-
mated by:

a`k(i) ≈

{
‖νk(i−1)−ψ`(i)‖

−2∑
n∈Nk

‖νk(i−1)−ψn(i)‖−2 , ` ∈ Nk
0, otherwise

(19)

One important observation from (19) is that the combination
weights are estimated such that the nodes allocate higher
weights to neighbors with similar objectives while learning to
ignore misleading information. As a result, using this combi-
nation method enables the nodes to continuously learn about
the objective of their neighbors so that they can distinguish
between the useful and misleading information. Estimating the
combination weights in this manner helps the agents to benefit
from the cooperation with their neighbors. Moreover, due to
promoting similarity among the nodes with similar objectives,
this method results in a more discriminative dictionary which
leads to better classification results (section III).

III. EXPERIMENTS AND RESULTS

A. Dataset and Evaluation Methods

In this paper, a publicly available dataset namely ICIP2013
[16] is used for evaluation. This dataset contains many cells
within each specimen image. This dataset contains 419 sera
of patients. Approximately 100-200 cell images were extracted
from each patient serum. In total, there are 68,429 cell images
extracted including 13,596 cell images for training (publicly
available), and 54,833 for testing (private for the organizers).

Each annotated cell image contains the information about the
cell pattern, intensity level (positive or intermediate), mask and
the image ID (the category of the cell). Note that in the Cell
Level we are facing a 6-class classification problem, where
the classes are Centromere, Golgi, Homogeneous, Nucleolar,
Nucleolar membrane (NuMem) and Speckled. But at the
Specimen Level, we have seven classes where the Mitosis
Spindle class is added.

Due to the lack of a test set, two evaluation methods are used
in the literature. The first is HSM method reported in [17],
where 600 cells (300 for Golgi class) from each class are
used for training and the rest for test. The other method is
LOSO as performed for the ICPR2012 dataset.

B. Classification Results

Table I shows the experimental results for the ICIP2013
dataset. The ADDL results are reported in two forms of
adaptive and uniform weights according to (19) and (16) re-
spectively. The proposed ADDL method with adaptive weights
outperforms other methods significantly. By using the HSM
evaluation method the ADDL with adaptive weights obtained
93.7% accuracy which is 2% higher than ADDL with uniform
weights and other dictionary learning (DL) methods. Addition-
ally, it outperforms non-DL methods by 5%.

With the LOSO evaluation method, the ADDL with adaptive
weights obtained 81.6% accuracy on average which is 4%
higher than that achieved by the ADDL with uniform weights.
This performance is better than the other DL based methods
and 4% higher than other classification methods. Additionally,
the performance in the specimen level also outperforms other
methods offering 90.4% accuracy.

C. Computational cost

The dictionary learning is a computationally expensive and
time consuming task. Table II shows different dictionary
learning procedures with their computation time. These mea-
surements are accomplished in a machine with Intel Core
i7 CPU and 16 GB RAM with 64-bit operating system. As
shown in Table II, the proposed method takes 286.21 seconds
to calculate the dictionary when the information is given to
a single node to process. This is 47 seconds lower than the
time needed for passing information to all nodes to process
but significantly better than the results of the other dictionary
methods. For example, ADDL is 9 and 20 times better than
the [3] and SNPB [18] methods, respectively. Therefore, it
can be seen clearly that the proposed method can enhance the
performance of dictionary learning task significantly in terms
of both computational cost and classification accuracy.

IV. CONCLUSION

We proposed an adaptive distributed dictionary learning
method that benefits from lower computational cost with lower
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TABLE I
THE CLASSIFICATION ACCURACIES BY USING HSM AND LOSO EVALUATION METHODS.

ICIP2013 (%)

ADDL Other DL Methods Others
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SN
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[1
8]
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[1
9]

m
an

i v
an

na
n

[2
0]

H
SM

[1
7]

L
ar

se
n

[2
1]

HSM Cell
Level

Positive 97.9 95.4 95.8 96.8 - - 95.5 -
Intermediate 89.4 87.6 87.9 88.8 - - 80.9 -

Average 93.7 91.5 91.9 92.8 - - 88.2 -

LOSO
Cell
Level

Positive 88.5 84.2 83.4 83.8 - - - -
Intermediate 74.7 71.4 71.2 72 - - - -

Average 81.6 77.8 77.3 77.9 81.1 80.3 - 78.7
Specimen Level 90.4 86.7 88 89.2 86.7 89.9 - -

TABLE II
DICTIONARY LEARNING METHODS’ COMPUTATIONAL TIMES (SEC).

ADDL Ensafi [3] SNPB [18]All Nodes Single Node
333.73 286.21 2751.91 5742.64

number of tuning parameters which is an important advan-
tage in solving classification problems. The ADDL method
is applied to HEp-2 cell images and obtained state-of-the-
art results. The proposed method enhances the accuracy of
the cell classification problem compared to other methods
while reducing the computational time significantly. Moreover,
learning the combination weights adaptively is an important
contribution for the proposed method which makes it capable
of adjusting itself for different datasets.
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