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Abstract—Several blind calibration methods have been pro-
posed in a compressive sensing framework to mitigate the
detrimental effects of uncertainties in the measurement matrix
due to sensor gain and phase errors. Most of these methods
operate on the signal domain samples of the receiving elements.
This becomes computationally intractable if a large number of
time samples is required, for example in low-SNR applications.
In this paper, we propose an iterative blind calibration method
to estimate the receiver path gains and phases as well as the
observed scene from the measured array covariance matrix under
the assumption that the observed scene is sparse. We successfully
demonstrate the effectiveness of our method using simulated data
for a 20-element uniform linear array as well as actual data from
a 48-element station (subarray) of the Low Frequency Array
(LOFAR) radio astronomical phased array.

I. INTRODUCTION

Compressive sensing (CS) theory asserts that one can re-
cover a sparse signal from far fewer samples or measurements
than traditional methods use. The problem of acquiring a Q-
dimensional signal x through L linear measurements y = Ax
arises in many contexts. In many cases, the signal is K-sparse,
meaning that only K << Q components are nonzero. When
the measurement matrix A is known, an estimate for x can
be found using `1 minimization and solving

x̂ = argmin
x

‖ x ‖1 subject to ‖ y −Ax ‖2 < ε (1)

for a well chosen ε.
One problem that can arise when applying CS to actual data,

is lack of knowledge of, or uncertainty, in the measurement
process. In practice, it is therefore often not possible to
know the measurement matrix perfectly. Usually, the sensors
introduce a distortion to the measurements. For example, in
many sensor network or radar applications, the location or
intrinsic parameters of the sensors are not exactly known [1]–
[3]. The problem of blind calibration was first studied in the
context of compressed sensing, as a general sparsity problem.
Initially this method was used to estimate signals, instrumental
gain and phase distortions in the absence of additive noise [4].
Later this idea was extended to the case with additive noise
in the measurements [5]–[7].

These methods usually operate on time series data in the
signal or voltage domain. Such methods may become compu-
tationally intractable in low-SNR applications, such as radio

astronomy, where a large number of time samples is required
to obtain a meaningful calibration solution. In this paper,
we therefore introduce a novel blind calibration method that
estimates the sensor gains and phases as well as the observed
scene from the measured array covariance matrix under the
assumption that the observed scene is sparse. We demonstrate
the effectiveness of the proposed method using simulated data
as well as actual data from a single station (subarray) of the
Low Frequency Array (LOFAR) radio telescope [8]. Since
our method is a blind calibration method, it does not require
a priori knowledge of positions and powers of the sources
in the observed scene. This makes blind calibration methods
robust to the presence of unknown sources, such as low power
broadband RFI or transient phenomena in radio astronomy. We
also discuss the computational complexity of our algorithm,
clearly showing the advantage of applying the CS approach to
an integrated array covariance matrix instead of to time series
data if a large number of time samples is required.

Notation: The complex conjugate (Hermitian) transpose is
denoted by H , the Hadamard product by �, ◦ denotes the
Khatri-Rao product of two matrices and an estimated value
is denoted by (̂.). Overbar (.) denotes complex conjugation,
vec(. ) converts a matrix to a vector by stacking the columns of
the matrix while diag (.) converts a vector to a diagonal matrix
with the elements of the vector placed on the main diagonal.
Lowercase bold denotes column vectors and uppercase bold
denotes a matrix. The Frobenius norm is represented by ‖.‖F
while l1 norm of matrices is denoted by ‖.‖1.

II. DATA MODEL AND PROBLEM STATEMENT

We consider an array of J antennas and model the sky
as a collection of Q spatially discrete point sources or Q
spatially discrete directions where a point source may be
present. We denote the narrowband signal from the qth source
or direction at time sample n and frequency fk by sq(n, k).
The Q source signals can be stacked in a column vector
s(n, k) = [s1(n, k), · · · , sQ(n, k)]T . The signal amplitudes
may be modified by the antenna response, which can be
modeled by a diagonal matrix B if all antennas have the
same response. The array response vectors towards each
direction can be stacked in an array response matrix A and
the unknown receive path gains can be stacked in a vector
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g. The additive noise signals of all receive paths is assumed
to be i.i.d Gaussian and can be stacked in a column vector
n(n, k) = [n1(n, k), · · · , nJ(n, k)]T . With these definitions,
the array signal vector for time sample n and frequency
channel k can be described by

x(n, k) = GABs(n, k) + n(n, k) (2)

where G = diag (g).
In the remainder of this paper, we concentrate on a single

selected narrowband channel, so we drop the dependence
on frequency for readability. Stacking all L time samples
of a Short Term Integration (STI) interval, for which we
need to calibrate the array, in an array signal matrix X =
[x(1), · · · ,x(L)], a source signal matrix S = [s(1), · · · , s(L)]
and a noise signal matrix N = [n(1), · · · ,n(L)], we can write
our data model as

X = GABS + N. (3)

In [7], this data model is used to develop a method to
estimate G and S assuming that S is sparse in its spatial
dimension. In this paper, we propose a blind calibration
method based on the same assumption using only the array
covariance matrix instead of the full time series data. The
array covariance matrix estimate for the STI is given by

R̂ =
1

L
XXH . (4)

Based on (3) and assuming that the source and noise signals
are uncorrelated, we find

R = E
{

R̂
}
= GABΣsB

HAHGH + Σn, (5)

where Σs = E
{
L−1SSH

}
= diag (σs) is the signal covari-

ance matrix and Σn = E
{
L−1NNH

}
= diag (σn) is the

noise covariance matrix. Since the source powers are unknown,
we can simplify (5) by introducing Σ = BΣsB

H = diag (σ).
We can now formulate our calibration problem as

{ĝ, σ̂} = argmin
g,σ

‖σ‖1

s. t.
∥∥∥(R̂−GAΣAHGH

)
�M

∥∥∥
F
< ε,

σq ≥ 0, (6)

where M is a mask matrix whose entries are equal to
unity except for entries associated with elements of the array
covariance matrix R̂ that need to be ignored, which are zero.
For the moment, we will assume that only the autocorrelations
are masked, such that we do not have to estimate σn, but we
will see in our LOFAR example that this mask matrix can
also be exploited to spatially filter our signal. The tolerance
parameter ε should be chosen based on the quality of the
available gain estimate and the noise. We will discuss this
point in more detail later.

We can vectorize the matrices in the Frobenius norm to cast
the constraint into the same form as the constraint in (1):∥∥∥(vec(R̂

)
−
(
GA ◦GA

)
σ
)
diag (vec (M))

∥∥∥
2
. (7)

We can define a selection matrix Is that reduces the length of
the vector vec

(
R̂
)

from P 2 to ‖vec (M)‖1. By choosing the
selection matrix appropriately, we can rewrite (7) to∥∥∥Isvec(R̂)− Is

(
GA ◦GA

)
σ
∥∥∥
2
. (8)

With y = Isvec
(
R̂
)

, M = Is
(
GA ◦GA

)
and x = σ, the

problem of finding the image values σ is of the familiar form
given in (1). We have added the positivity constraint to avoid
negative solutions for the source powers, which is an artefact
that may result from neglecting the autocorrelations. In the
algorithm presented below we suggest to solve the problem
defined by (6) by alternatingly solving for σ using a sparsity
constraint and g.

III. BLIND CALIBRATION METHOD

A. Algorithm

We propose to solve the problem defined in (6) by the
following iterative algorithm:

1) Inizialitation Set the iteration counter i = 1 and set the
maximum number of iterations Niter. Initialize G[0] to
the identity matrix (assuming an array of identical ele-
ments, another initial estimate may be more appropriate
otherwise) and set the starting value of the tolerance
parameter to ε[1].

2) Estimate Σ[i] by solving the convex optimization prob-
lem stated in (6) with the tolerance set to ε[i], using
G[i−1] as prior knowledge.

3) Estimate G[i] using Σ[i] as prior knowledge. This is a
regular least squares problem, that can be solved using
a fast alternating direction implicit method [9].

4) Check for convergence If the convex optimization rou-
tine ended successfully, decrease the tolerance to ε[i+1]

and repeat steps 2–4, otherwise stop and use the result
from the previous iteration as solution.

The initial value for the tolerance parameter can be set
close to ε[1] =

∥∥∥R̂�M∥∥∥
F

, since this maximum value for
the least squares difference between data and model can be
satisfied by the trivial solution σ = 0. The minimum value
achievable ε[∞] is determined by the noise level in the data,
which can be estimated by using the fact that, for Gaussian
signals, cov (R) = L−1R ⊗ R. The rate of convergence is
limited by the sensitivity of the gain solutions to errors in the
image model and vice versa. Empirically, we found that

ε[i] =
(
ε[1] − ε[∞]

)
e(1−i)/2 + ε[∞] (9)

strikes a good balance between ensuring a reasonable rate
of convergence without leading to a suboptimal solution too
frequently due to prematurely stopping the iteration cycles.

B. Algorithm Efficiency

Since our algorithm operates on the measured array co-
variance matrix, that matrix has to be estimated first from
the time samples, which requires O

(
LJ2

)
computations. We

used CVX [10] to solve the sparse reconstruction problem
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in step 2 of our algorithm. To assess the complexity of our
algorithm, we can formulate the convex optimization problem
as a second-order cone programming (SOCP) problem. From
[11], we know that such a problem can be solved in O

(√
Q
)

iterations, where Q is the number of variables to solve for in
our image vector σ. Each of these iterations involves solving a
linear system, which has O

(
Q3
)

complexity. This is an upper
bound, since the problem can be solved much faster when the
parameter vector is sparse [7]. In step 3 of the algorithm, we
estimate the gains, which has O

(
J2
)

complexity [9]. Assum-
ing that Niter iterations are required, the total complexity of
our method is O

(
LJ2 +Niter

(
Q3.5 + J2

))
.

The method proposed in [7] does not require computation
of the array covariance matrix and solves for all param-
eters in a single estimation process, i.e., it does not iter-
ate between estimation of gains and phases and estimation
of the source signals. However, it operates directly on the
time series data, leading to a computational complexity of
O
(
(2J + 3LQ)

2.5
(4 + 4JL+ 3LQ)

)
.

In one of the LOFAR examples presented in the next
section, we have J = 48, L = 195312 and Q = 1473. In both
simulations and application to LOFAR data, we found that
our algorithm typically required between 5 and 20 iterations to
converge. Taking Niter = 10, we find that our method requires
order 1012 operations, while a voltage domain method such as
proposed in [7] would require order 1031 operations. Even if
we assume that the voltage domain method only requires

√
L

samples to achieve the same accuracy since noise averages
out more efficiently, the voltage domain method would still
require order 1022 operations. This example clearly shows
the computational advantages of the proposed power domain
method.

An advantage of applying sparse reconstruction methods in
the signal domain is that more non-zero components can be
successfully recovered than in the power domain, i.e., signal
domain methods pose less stringent constraints on the degree
of sparsity of the observed scene. However, if the observed
scene is sufficiently sparse, it is clearly more attractive to
do blind calibration based on the measured array covariance
matrix from a computational efficiency point of view.

IV. EXPERIMENTAL RESULTS

A. Simulation

We have set up a Monte Carlo simulation to validate
our algorithm. All simulations consider a 20-element half-
wavelength spaced uniform linear array (ULA) observing
four sources. The sources have random positions that are
generated in such a way that the mutual coherence between
the associated array response vectors is low enough that
successful sparse reconstruction is almost sure if there were
no gain errors. Although such a condition may not always
be satisfied in reality, we do impose it here to concentrate
on the validation of our approach. The four sources have
random source powers uniformly distributed between zero and
one normalized such that the brightest source has unit power.
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Fig. 1: RMS difference between estimated and true gain val-
ues as function of SNR.

The receiving elements were assumed to have an isotropic
reception pattern, such that B = I. The gain values of the
individual receive paths were defined as gj = 1+ CN (0, 0.3)
and stacked in a vector g. To resolve the ambiguity between
gain amplitudes and source powers, ‖g‖2 was normalized to
unity. The noise power was assumed equal for all receive
paths and chosen based on the desired SNR of the strongest
source, i.e., Σn = (1/SNR) I. The SNR was varied in 10
logarithmically spaced steps from -20 dB to +20 dB and the
number of samples per STI, L, was set to 104, 105 and 106 in
consecutive simulations. For each value of the SNR parameter
and each value of L, 100 runs were made.

In this simulation, we ignored the autocorrelations using a
selection matrix as described in (8). It is interesting to note,
however, that even without this selection matrix, we obtained
good solutions for SNR values well above 0 dB. When the
SNR drops below 0 dB, ignoring the presence of Σn and not
masking the autocorrelations results in a bias that ultimately
leads to poor gain solutions.

Before we can compare the estimated gain values ĝ with
the true gain values g, we need to take into account that
blind calibration inherently involves an ambiguity between a
phase gradient over the array in the gain phase solutions and
a common position shift of all sources. In our simulations, we
resolved this ambiguity by determining the common position
shift of all sources based on a comparison between the
estimated image vector and the true image vector and making
an appropriate phase gradient correction to ĝ before comparing
it with g.

For each run, the difference between the true gain vector g
and the estimated gain vector ĝ was calculated by calculating
the RMS difference over all receiving elements, i.e., we used
the error measure

εg =

√√√√ 1

J

J∑
j=1

|gj − ĝj |2. (10)

Figure 1 shows the average RMS error over 100 runs as
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Fig. 2: Bias as fraction of the RMS difference between esti-
mated and true gain values as function of SNR.

function of SNR for different values of L. For L = 106 the
error is inversely proportional to SNR as expected, except for
high SNR values. The latter can be explained by the fact that
we also used stochastic source signals. As a result, the variance
of the measured value is dominated by the stochastic properties
of the source signals and not by the SNR. When L = 104

the expected inverse proportionality between the error and the
SNR breaks down, because the source signals sink in the noise,
i.e., even after integration over 104 samples, the SNR is still
close to one or even lower than unity. Comparing the curves
for different values of L, we can conclude that the error is
inversely proportional to

√
L. We therefore conclude that our

proposed method exhibits the usual statistical behaviour in the
presence of noise.

Figure 2 shows the bias expressed as fraction of the RMS
deviation defined in (10) as function of SNR for the respective
values of L. Although the bias can be a significant fraction of
the error, it is always smaller than the error. We therefore
conclude that, within the accuracy of our simulations, our
proposed method is unbiased. The statistical behaviour found
in these simulations, therefore gives us sufficient confidence
in the robustness of our proposed method to noise to apply it
to real data.

B. Application to LOFAR data

LOFAR is a phased array radio telescope covering the 10–
240 MHz frequency range [8]. It currently consists of 24 core
stations (subarrays) near Exloo (The Netherlands), 14 remote
stations distributed over the Netherlands and 12 international
stations distributed over Europe. Each station consists of an
array of low band antennas (LBAs) observing in the 10–90
MHz frequency range and an array of high band antennas
to observe the 110–240 MHz frequency range. For this test,
we used data from a single polarisation measurement with
a 48-element LBA array of a single core station. The 48
antennas were arranged in the randomised configuration shown
in Fig. 3.
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Fig. 3: Array configuration of the 48-element LOFAR station.
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Fig. 4: All-sky images at 39.844 MHz before (left column)
and after (right column) blind calibration using the
proposed method without spatial filtering (top row)
and with spatial filtering applied (bottom row). The
images in the top row are plotted on the same linear
scale, while the images in the bottom row are plotted
on the same logarithmic (dB) scale.

The data used for this test consisted of a series of array
covariance matrices captured between 21:01:29 UTC and
21:10:00 UTC on July 30, 2011, each obtained for a 195-kHz
frequency channel after 1 s integration. Since the resolution
of a radio telescope is roughly λ/D where λ is the observed
wavelength and D is the maximum baseline [12], we defined
σ on an image grid with a spacing of 0.5λ/D. We show results
for the frequency channels centred at 39.844 MHz and 48.633
MHz, for which the image vectors σ had lengths of 1473 and
2185, respectively.

The top left panel of Fig. 4 shows an all-sky image at 39.844
MHz based on the uncalibrated array covariance matrix. This
image clearly shows two bright point sources, but it also shows
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Fig. 5: All-sky images at 48.633 MHz, analogous to the
results shown in Fig. 4 for 39.844 MHz.

a significant amount of diffuse emission from our own Galaxy.
Since diffuse emission is associated with large spatial scales,
most of the power is concentrated in elements of the array
covariance matrix that are associated with short distances in
the co-array or, in radio astronomical terms, short baselines.
These short baselines are formed by neighbouring antennas,
which also affect eachother’s output signal by mutual coupling.
We therefore have two good reasons to mask not only the
autocorrelations, but also all entries associated with these
short baselines using the mask matrix introduced in (6) or the
selection matrix defined in (8), an approach that is also taken
in [13]. We used this to spatially filter the image by ignoring
all baselines shorter than four wavelengths. The uncalibrated
spatially filtered image is shown in the bottom left panel of
Fig. 4.

The all-sky images shown in the right column of Fig. 4 were
obtained after calibration using the proposed method. Both
images clearly show improvement. In the top right image,
which was made without spatially filtering the signal, the
contrast between the two point sources and the background
is considerably larger indicating that the power received from
the two point sources is added more coherently in the imaging
process. This is confirmed by the lower sidelobes (-15.0 dB on
average at some distance from the sources) in the bottom right
panel compared to the ones in the bottom left panel (-13.8 dB
on average).

Figure 5 shows the corresponding results for 48.633 MHz,
which confirm our earlier conclusions. At this higher fre-
quency, the baselines are longer compared to the observing
wavelength, which clearly makes the diffuse emission of
the Galaxy less dominant. This facilitates calibration owing
to the better contrast of the point sources. However, the
higher resolution also requires a finer image grid, thereby
making calibration computationally more demanding, but not
impractical owing to the fact that the degree of sparsity is

(almost) the same for all frequency channels.

V. CONCLUSION

In this paper, we presented a novel blind calibration method
that estimates the sensor gains and phases as well as the
observed scene from the measured array covariance matrix
assuming that the observed scene is sparse. Blind calibration
based on the array covariance matrix offers a significant
computational advantage over blind calibration based on time
series (signal domain) data, in particular in scenarios with low
SNR where a significant number of time samples is required
to obtain meaningful solutions. We successfully demonstrated
the effectiveness of the proposed method using simulated data
as well as actual data from a LOFAR station.
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