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ABSTRACT
Time-interleaved analog to digital converters (TI-ADC) offer
high sampling rates by passing the input signal throughC par-
allel low-rate ADCs. We can achieve C-times the sampling
rate of a single ADC if all the shifts between the channels
are identical. In practice, however, it is not possible to avoid
mismatch among shifts. Besides, the samples are also subject
to jitter noise. In this paper, we propose a blind method to
mitigate the joint effects of sampling jitter and shift mismatch
in the TI-ADC structure. We assume the input signal to be
bandlimited and incorporate the jitter via a stochastic model.
Next, we derive an approximate model based on a first-order
Taylor series and use an iterative maximum likelihood estima-
tor to reconstruct the uniform samples of the input signal. The
simulation results show that with a slight increase in the mean
square-error, we obtain a fast blind compensation algorithm.

Index Terms— Bandlimited signals, jitter noise, maxi-
mum likelihood estimation, mismatch compensation, time-
interleaved ADC

1. INTRODUCTION

The time-interleaved ADC (TI-ADC) is a low-cost solution
for achieving high sampling rates [1, 2]. This structure con-
tains C ADC channels, each with a sampling rate of fs, yield-
ing an overall rate of C fs. However, this structure suffers
from mismatch error between channels which can potentially
degrade the performance of TI-ADC [3,4]. Due to its nonlin-
ear effect, the interchannel timing mismatch is known to have
the most detrimental effect among the channel mismatches.
As a result, there has been numerous attempts to estimate
and compensate this timing mismatch; the reader is referred
to [5–9] for some of the blind techniques that operate at stan-
dard conditions without requiring training signal for calibra-
tion.

Jitter noise is an additional non-ideality in ADCs in gen-
eral. Simply, it causes unpredictable but small deviation in the
sampling instances from their nominal periodic values [3,10].
To compensate this effect, the deviations need to be estimated
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Fig. 1. Time-interleaved ADC structure (taken from [13]).

first. A Bayesian approach based on the Gibbs sampling tech-
nique has been devised in [11] to estimate the timing devia-
tions in a single channel ADC. However, the method demands
high computational complexity, which makes it unsuitable for
on-line applications. An alternative with low computational
cost is proposed in [12] that estimates the uniform samples of
the signal using an iterative linear estimator. The method is
able to mitigate small amount of jitter noise. Recently, we
extended the method of [11] to a multichannel framework
in [13] for compensating both the interchannel timing mis-
match and the jitter noise. Similar to [11], the algorithm is
suitable for post-processing applications where the computa-
tional cost is not of major concern. In this paper, we propose
a computationally efficient alternative to estimate the uniform
samples of a bandlimited signal captured by a TI-ADC suffer-
ing from both the jitter and the timing mismatch with a slight
performance loss.
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2. ACQUISITION MODEL

In this section, we first explain the signal acquisition struc-
ture in a TI-ADC setup and the input signal model in sepa-
rate subsections. Then, we present a first-order Taylor series
approximation to incorporate the timing mismatches into our
model.

2.1. TI-ADC structure

A time-interleaved ADC consists of C parallel channels that
each operate at an oversampling ratio M with M ∈ N (Fig-
ure 1). Thus, the total oversampling ratio equals M ×C. The
ideal scenario for a TI-ADC corresponds to a setup in which
the sampling instances of the cth channel occur at

Tc =
{
mTs + cTs

C

}
m∈Z , (1)

where Ts = 1/fs is the sampling period in each channel, and
0 ≤ c ≤ C − 1. In this ideal setting, the obtained samples
are the same as a single channel ADC with C times the sam-
pling rate. In practice, however, the sampling instances of the
cth channel differ from the ideal values by a constant timing
mismatch tc, and the random jitter zc[m]. Hence, the more
realistic model for the sampling instances is given by

Tc′ =
{
mTs + cTs

C + zc[m] + tc
}
m∈Z , (2)

where we consider t0 = 0 as a reference, and assume {tc}C−1c=1

and {zc[m]}c,m are independent zero-mean Gaussian random
variables with variance σ2

t and σ2
z , respectively. The output of

channel c, i.e. yc[m], is then formulated as

yc[m] = x
(
mTs + cTs

C + zc[m] + tc
)
+ wc[m]. (3)

Here, wc stands for the joint effects of thermal and quantiza-
tion noises, which is modeled by a white Gaussian noise with
variance σ2

w, and is independent of timing mismatches. In the
rest of this article, we assume that the values of σ2

t , σ2
z , and

σ2
w are known in advance.

2.2. Input signal model

Suppose the input signal x(t) is a deterministic bandlimited
signal with the cut-off frequency fc/2. Without loss of gen-
erality, we focus on fc = 1. Thus, x(t) can be written as

x(t) =
∑
k∈Z

x(k) sinc
(
t− k

)
, (4)

where {x(k)}k are the uniform samples of x(t) at the Nyquist
rate, and sinc(t) = sin(πt)/πt. For Ts = 1

M , i.e., oversam-
pling ratio of M at each channel, (3) can be rewritten as

yc[m] =∑
k∈Z

x(k) sinc
(
m
M + c

M C + zc[m] + tc − k
)
+ wc[m]. (5)

Our goal is to estimate the uniform samples x(k) of x
based on the set of samples {yc[m]}C−1c=0 provided by the C
channels of TI-ADC. To this end, we truncate the summation
in (5) to 0 ≤ k ≤ (K − 1), and use the samples {yc[m]}C−1c=0

with 0 ≤ m ≤ (M K − 1).More precisely, the output signal
yc[m] is approximated as

yc[m] ∼=
K−1∑
k=0

x(k) sinc
(
m
M + c

M C + zc[m] + tc − k
)
+ wc[m], (6)

for 0 ≤ m ≤ (M K − 1).

2.3. Taylor approximation of the system model

Oftentimes, the timing mismatches zc[m]+ tc are small com-
pared to the sampling period Ts = 1

M . This allows us to ap-
ply the first-order Taylor series approximation in (6), which
describes the effect of timing mismatches in a linear way:

yc[m] ≈
K−1∑
k=0

x(k)sinc′
(
m
M + c

M C − k
)
(zc[m] + tc)

+
K−1∑
k=0

x(k) sinc
(
m
M + c

M C − k
)
+ wc[m], (7)

where sinc′(t) = d
dt (sin(πt)/πt). For the sake of simplicity,

we express (7) in a matrix form as

yc ≈ Hc x + tc H′c x + Zc H′c x + wc, (8)

where

yc = [yc[0], . . . , yc[Nc − 1]]
T
,

x = [x[0], . . . , x[K − 1]]
T
,

Hc[m, k] = sinc(m
M + c

M C − k),
H′c[m, k] = sinc′(m

M + c
M C − k),

and Zc is anNc×Nc diagonal matrix with Zc[m,m] = zc[m]
for 0 ≤ m ≤ Nc − 1, 0 ≤ k ≤ K − 1, and Nc =M K.

Since wc[m], zc[m], and tc are independent Gaussian ran-
dom variables, vector yc in (8) is also a Gaussian vector [14]:

yc ∼ N (µc,Σcc), (9)

with the mean being

µc = Hcx, (10)

and the covariance matrix being

Σcc = E[(yc −Hcx)(yc −Hcx)
T ]

= E[Zc(H
′
cx)(H

′
cx)

TZc] + σ2
t (H

′
cx)(H

′
cx)

T + σ2
w INc

= σ2
z INc

�(H′cx)(H′cx)T + σ2
t (H

′
cx)(H

′
cx)

T + σ2
w INc

(11)
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Fig. 2. MSE performance of the iterative ML estimator for different
values of σz , with σ2

w = 0.052, σt = 0.2 Tc
M C

, M = 1, and C = 4.

where � denotes the Hadamard matrix product, 1 ≤ c ≤
C− 1, and INc

is the Nc×Nc identity matrix. As the vectors
{yc}c are independent of each other, we can write that

p(y;x) =

C−1∏
c=0

p(yc;x), (12)

where y , [yT
0 , . . . ,y

T
C−1]

T . Note that the covariance ma-
trix of the channel 0, i.e. Σ00, does not contain the term
σ2
t (H

′
cx)(H

′
cx)

T , because t0 is assumed to be zero.

3. MAXIMUM LIKELIHOOD ESTIMATION

We derive an iterative method to approximate the maximum
likelihood (ML) estimation of vector x. The ML method tries
to find the value of x that maximizes the likelihood function
or equally log-likelihood (LL) function [14]. In our approx-
imated observation model, it is convenient to concentrate the
LL function:

L(x;y) , ln p(y;x) =
C−1∑
c=0

ln p(yc;x)

= − Nc C

2
ln(2π)− 1

2

C−1∑
c=0

ln(det(Σcc))

− 1

2

C−1∑
c=0

(yc −Hc x)TΣ−1cc (yc −Hc x). (13)

Since covariance matrices Σccs are dependent on vector
x, maximizing (13) is not straightforward. We use the similar
iterative solution as in [12] to approximate the ML estimator.
In this iterative approach, first the algorithm is initialized with

x̂ =
(C−1∑

c=0

HT
c Hc

)−1(C−1∑
c=0

HT
c yc

)
, (14)

 

Fig. 3. MSE performance of the iterative ML estimator for different
values of σt, with σ2

w = 0.052, σz = 0.2 Tc
M C

, M = 1, and C = 4.

assuming that there is no timing mismatches. Then, we calcu-
late the covariance matrices Σ̂ccs by replacing (14) into (11)
(the term σ2

t (H
′
cx)(H

′
cx)

T is excluded in computing Σ̂00).
Now, we fix the Σ̂ccs and solve the following linear equation

∂L(x;y)
∂x

= 0 (15)

to obtain the estimate of x:

x̂ =
(C−1∑

c=0

HT
c Σ̂−1cc Hc

)−1(C−1∑
c=0

HT
c Σ̂−1cc yc

)
. (16)

By replacing x̂ in (11) an computing the new Σ̂ccs, the repe-
tition cycle is completed.

The approximate ML estimator of the vector x can be
represented as the following iterative procedure:

Step 1) compute x̂(0) from (14).

Step 2) i = 0.

Step 3) compute Σ̂
(i)
cc from (11) (Σ̂(i)

00 does not have the
σ2
t (H

′
cx̂

(i))(H′cx̂
(i))T term).

Step 4) compute x̂(i+1) from (16).

Step 5) if ‖x̂(i+1) − x̂(i)‖2 < ε or i > max iter return
x̂(i+1) as output of the algorithm, otherwise i = i+ 1 and go
to Step 3.

4. SIMULATION RESULTS

In this section, the performance of the iterative method ap-
proximating the ML estimator is presented. We model the
input vector x as a zero-mean Gaussian vector with covari-
ance matrix σ2

x IK where σx = 1 and K = 10. In all the
simulations, the variance of the additive noise is assumed to
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Fig. 4. Average number of iterations that iterative ML estimator
needs to ‖x̂(i+1) − x̂(i)‖2 < 10−8 for different values of σt (σ2

w =
0.052, σz = 0.2 Tc

M C
, M = 1, and C = 4).

be σ2
w = 0.052 (SNR = 26 dB). The mean square errors

of x (MSEx = ‖x̂ − x‖2) are displayed in Figures 2 and 3.
To examine the performance of our algorithm, we use the nu-
merical Bayesian approach presented in [13]. This technique
utilizes Gibbs sampling which is a Markov chain Monte Carlo
algorithm for implementing optimal MMSE estimator. How-
ever, the algorithm suffers from high computational time due
to the need for great number of iterations. Since the Bayesian
approach supposes that the distribution of x is known a-priori,
it is expected to offer a lower MSE bound. Additionally, the
performance of the algorithm is compared against the case in
which timing mismatches (jitter noise and interchannel tim-
ing mismatch) are not compensated, i.e., x̂ is only estimated
according to (14). Each point in the figures is the average of
10000 independent runs except for more computationally ex-
pensive Bayesian approach, where it is the average of 1000
trials. Also, the stopping criterions are set to ε = 10−8 and
max iter = 1000.

In Figure 2, the performance of the iterative ML estima-
tor together with the Bayesian approach and no compensation
case is depicted for different values of σz , where M = 1,
C = 4, σt = 0.2 Tc

M C , and Tc = 1/fc. We observe that
for σz < 0.3 Tc

M C the proposed iterative method has almost
the same MSE compared to the Bayesian approach. It is im-
portant to note that for σz > 0.3 Tc

M C there is a significant
probability that the ordering of the timing instances gets vi-
olated (Figure 7), which is unlikely in practice. In Figures 3
to 6, we fix σz = 0.2 Tc

M C and sweep σt. Again we can see
in Figure 3 that the method performs near the Bayesian ap-
proach for σt < 0.3 Tc

M C , while keeping a promising distance
with the uncompensated curve.

The average number of iterations required for ‖x̂(i+1) −
x̂(i)‖2 < ε is displayed in Figure 4. For the reasonable range
σt < 0.3 Tc

M C , the algorithm converges in less than 10 itera-

 

Fig. 5. Comparing average computational time of iterative ML es-
timator and Bayesian approach method for different values of σt

(σ2
w = 0.052, σz = 0.2 Ts

M C
, M = 1, and C = 4).

tions on average. To compare the computational complexities,
we measure the running times of the iterative ML algorithm
and the numerical Bayesian approach with MATLAB simula-
tions (tic and toc commands). The employed machine had
8.0 GB of RAM and a Quad-Core processor with the clock
speed of 3.40 GHz. Figure 5 shows the average time needed
for each algorithm to estimate the vector x. Our method is
found to be roughly 1000 times faster than the Bayesian ap-
proach.

Figure 6 shows the sensitivity of our method to the preci-
sion of the parameters σt, σz , and σw. We considered three
cases defined by setting (i) σ(est.)

t = 5σt, (ii) σ(est.)
z = 2σz ,

and (iii) σ(est.)
w = 0.5σw. Although these cases cause slight

performance loss compared to the exact estimation case, there
is still a reasonable gap between them and the uncompensated
curve, and the method is relatively resistant to the parameter
imprecision.

5. CONCLUSION

The TI-ADC is a low-cost analog to digital structure that can
achieve high sampling rates. However, its performance is
greatly affected by interchannel timing mismatch and sam-
pling jitter. Therefore, it is essential to estimate and compen-
sate the timing nonidealities. In this paper, we proposed a
blind yet computationally efficient technique to compensate
the jitter noise and the interchannel timing mismatch. The
method relies on a first-order Taylor series approximation of
the timing mismatches, which simplifies their nonlinear na-
ture into an almost linear form. Then, we employ an iterative
ML estimator to obtain the interchannel timing mismatch, and
eventually achieve the uniform samples of the signal. Simu-
lation results reveal a significant performance improvement
compared to the case where no compensation is applied. Fur-
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Fig. 6. Performance sensitivity of the iterative ML method to
estimation errors for cases σ(est.)

t = 5σt, σ
(est.)
z = 2σz , and

σ
(est.)
w = 0.5σw. (σ2

w = 0.052, σz = 0.2 Tc
M C

, M = 1, and
C = 4.

 

Fig. 7. The probability that x ∼ N (0, σ2
x) exceeds its sampling

region (p[|x| > Tc
2M C

]) for different values of σx.

thermore, the method tightly follows the performance of the
optimal Bayesian approach for small to moderate timing mis-
match values. Nevertheless, as the first-order Taylor approxi-
mation becomes less sharp for large mismatch values, we ex-
pect the performance to deviate from the Bayesian technique
at large mismatch variances. Fortunately, in most of the prac-
tical cases, such large mismatch values are uncommon.
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