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ABSTRACT

This paper presents a new Bayesian clustering method to analyse re-
mote scenes sensed via multispectral Lidar measurements. To a first
approximation, each Lidar waveform mainly consists of the temporal
signature of the observed target, which depends on the wavelength
of the laser source considered and which is corrupted by Poisson
noise. By sensing the scene at several wavelengths, we expect a
more accurate target range estimation and a more efficient spectral
analysis of the scene. Thanks to its spectral classification capability,
the proposed hierarchical Bayesian model, coupled with an efficient
Markov chain Monte Carlo algorithm, allows the estimation of depth
images together with reflectivity-based scene segmentation images.
The proposed methodology is illustrated via experiments conducted
with real multispectral Lidar data.

Index Terms— Multispectral Lidar, Depth imaging, Bayesian
estimation, Markov Chain Monte Carlo, Spectral clustering.

1. INTRODUCTION

Laser altimetry (or Lidar) is an acknowledged tool for extracting
spatial structures from three-dimensional (3D) scenes. Using time-
of-flight to create a distance profile, signal analysis can recover,
for instance, tree and canopy heights, leaf area indices and ground
slope by analyzing the reflected photons from a target. Conversely,
passive multispectral (MSI) (dozen of wavelengths) and hyperspec-
tral images (HSI) (hundreds of wavelengths) are widely used to ex-
tract spectral information about the scene which, for forest moni-
toring, can also provide useful parameters about the canopy com-
position and health. The most natural evolution to extract spatial
and spectral information from sensed scenes is to couple Lidar data
and multi/hyperspectral images [1,2]. Although the fusion of Li-
dar data and HSIs can improve scene characterization, data synchro-
nization issues in space (alignment, resolution) and time (dynamic
scene, change of observation conditions, etc) are still open issues.
For these reasons, multispectral Lidar (MSL) has recently received
attention from the remote sensing community for its ability to ex-
tract both structural and spectral information from 3D scenes [3-5].
The key advantage of MSL is the ability to provide information on
the full 3D distribution of materials, especially for scenes including
semi-transparent objects (e.g., vegetation or fences). Another moti-
vation for MSL is that HSI, even when fully synchronized, can only
integrate the spectral response along the path of each optical ray, not
measure the spectral response as a function of distance, e.g. depth
into a forest canopy. In [5-7], spectral unmixing techniques have
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been developed to analyze 3D scenes composed of multi-layered ob-
jects, assuming that the spectral signatures of the materials compos-
ing the scenes were known and assuming linear mixing processes.
In this paper we assume that for each pixel, the photons emitted by
the pulsed laser sources at different wavelength are reflected onto a
single surface. This is typically the case for short to mid-range (up
to dozens of meters) depth imaging where the divergence of the laser
source(s) can be neglected. Moreover, for such applications, the size
of the laser beam (i.e., its footprint) projected onto a surface of the
scene is generally relatively small (hundreds of microns) yielding a
high probability for this surface to be composed of a single material.
In a similar fashion to high spatial resolution passive hyperspectral
images, in the absence or lack of spectral mixtures, it seems more
sensible to use faster classification methods to analyse MSL data.
This is precisely the aim of this paper which studies, for the first
time to the best of our knowledge, a spectral clustering algorithm for
the analysis of MSL data.

Single-photon Lidar and thus MSL systems usually record, for
each pixel/region of the scene, a histogram of time delays between
emitted laser pulses and the detected photon arrivals. Thus the classi-
cal additive Gaussian noise assumption used for passive hyperspec-
tral images is not as suitable and Poisson noise models are more
appropriate for sparse photon count MSL signals. Indeed, Within
each histogram bin, the number of detected photons follows a dis-
crete distribution which can be approximated by a Poisson distri-
bution due to the particle nature of light. Due to the design of the
proposed experiments (performed indoor) and to simplify the esti-
mation problem, we further assume that the ambient light (e.g., solar
illumination) and dark counts potentially effecting the recorded the
MSL waveforms can be neglected. In this paper, we demonstrate
the possibility of efficient 3D scene analysis by exploiting geometric
and spectral information contained in MSL data, under favourable
observation conditions. However, the proposed method can be eas-
ily extended to more difficult observation conditions, as discussed in
the conclusions of the paper.

Adopting a Bayesian approach, appropriate prior distributions
are chosen for the unknown parameters of the model considered
here, i.e., the surface positions, the clustering labels and each class
parameters. The joint posterior distribution of these parameters is
then derived and a Markov chain Monte Carlo (MCMC) method is
used to generate samples according to the posterior of interest. This
fully Bayesian approach allows a careful study of the estimation per-
formance (through the derivation of measures of uncertainty). Al-
though very interesting, algorithmic improvement in terms of com-
putational complexity (e.g., using optimization methods) is out of
scope of this paper and is worthy of more effort which we will re-
port in future work.

The remainder of the paper is organized as follows. Section 2
introduces the observation model associated with MSL returns for a
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single-layered object to be analyzed. Section 3 presents the hierar-
chical Bayesian model associated with the spectral clustering prob-
lem considered and the associated posterior distribution. Section 4
describes the MCMC method used to sample from the posterior of
interest and subsequently approximate appropriate Bayesian estima-
tors. Results of experiments conducted on real MSL data are shown
and discussed in Section 5 and conclusions are finally reported in
Section 6.

2. PROBLEM FORMULATION

This section introduces the observation statistical model associated
with MSL returns for a single-layered object which will be used in
Section 3 for spectral classification of MSL data. We consider a 4-D
array Y of Lidar waveforms and of dimension Nyow X Neot X L X T,
where Nyow and N stands for the number of rows and columns
of the regular spatial sampling grid (in the transverse plane), L is
the number of spectral bands or wavelengths used to reconstruct the
scene and 7" is the number of temporal (corresponding to range) bins.
Lety; e = [Y]m',z,t = [yi’jxyl7 ey yiyjl"T]T be the Lidar wave-
form obtained in the pixel (4, j) using the /th wavelength. The ele-
ment y; j ¢+ is the photon count within the ¢th bin of the /th spectral
band considered. Let d; ; be the position of an object surface at a
given range from the sensor, whose spectral signature (observed at L
wavelengths) is denoted as A; j = [Aij1,- .., Aij,]7. According
to [8,9] and assuming that the ambient illumination and dark photon
counts can be neglected, each photon count y; ; ¢ ; is assumed to be
drawn from the following Poisson distribution

YigietlNiges iy ~ P (Nijego,e(t —ti;)) )]

where go,¢(-) is the photon impulse response whose shape can differ
between wavelength channels and ¢; ; is the characteristic time-of-
flight of photons emitted by a pulsed laser source and reaching the
detector after being reflected onto a target at range d; ; (d; ; and t; ;
are linearly related in free-space propagation). Moreover, the im-
pulse responses {go,¢(-)} are assumed to be known and can usually
be estimated during the imaging system calibration.

In this work, we further assume that the spectral signatures of
the scene surfaces can be clustered into at most K distinct groups or
classes whose means and covariances can differ and where K is a
user-defined parameter. Note that due to physical considerations the
unknown spectral signatures {\; ; } ;.; are assumed to be positive.

The problem addressed in this paper consists of jointly estimat-
ing the range of the targets (for all the image pixels), of identifying
the spectral signatures of each target surface, and of clustering these
signatures into /' groups whose parameters (e.g., mean and covari-
ance) are unknown. Here the clustering step is achieved by assigning
each of the Nyow X Neoi pixels a label to spectrally segment the scene
regions. The next section studies a new Bayesian model to perform
joint target range estimation and unsupervised spectral clustering.

3. BAYESIAN MODEL

3.1. Likelihood

Assuming that the MSL waveforms y; ; = {yi ..}, of a given
pixel (i, 7) result from the photons reflection onto a surface associ-
ated with the spectrum A;_;, the likelihood associated with the pixel
(3, j) can be expressed as

FyiglXigitig) = [ FoWigees Nigegoe(t = tig)), 2

£,t
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when assuming that the detected photon counts/noise realizations,
conditioned on their mean in all channels/spectral bands are indepen-
dent. Considering that the noise realizations in the different pixels
are independent, the joint likelihood can be expressed as

FOYIAT) = [ F(3isl X tig), 3)

4,3

where A = {A;;}, ; and T is an Nrow X Neoi matrix gathering the
target ranges.

3.2. Prior distributions

In this work, we do not account for the potential spatial correlations
between the target distances in neighbouring pixels of the scene.
Thus, each target position is considered as a discrete variable de-
fined on T = {tmin,- -, tmaz}, such that 1 < tmin < tmae < T
(in this paper we set (tmin, tmaz) = (1,7)) and assign the target

ranges independent priors, i.e., p(t;; = t) = t € T where

T’ = card(T). Note that more informative priors could be used
instead to capture potential spatial correlations affecting the range
profiles, as in [9] where a total-variation (TV) regularization [10,11]
promoting piecewise constant depth image was used. However, and
as will be illustrated in Section 5, when the number of spectral bands
L considered and the number of detected photons are significant, the
depth estimation does not require informative regularization (as the
L bands are used to estimate ¢; ;). For this reason and for paper
length constraints, we simply consider independent uniform priors
here.

To encode our prior belief that the spectral signatures in A can
be clustered into K groups, we consider the following mixture of
conjugate gamma priors

Fa

Xijgoelzig =kyrer, 0ok ~ G(Nije; ek, Oe,k) 4)

where z; ; € 1,..., K is a discrete label associating the pixel (3, j)
with the kth spectral cluster whose mean and covariance are charac-
terized by ¢ %, and ¢ 1.

When prior information about the K spectral signatures char-
acterized by 7¢x ok and 6,1 ok is available, it can be introduced
through an appropriate prior model. Here, we assume that limited
knowledge is available (fixed number of classes K) and to reduce
the model complexity, we assume that 7 = 7, V¢, which still al-
lows the prior mean and variance of the reflectivity parameters of
each class to vary among the wavelengths. We then consider follow-
ing prior model

G(ri;roco, 1/co), (52)
TG (Oe,k; €, €), (5b)

Tk ~

Oer  ~

where (r0,co) and € are fixed hyperparameters which specify the
shape of the prior f(ry) and f (0 k), respectively. Here we choose
(ro,co) = (1,10) and € = 1072, yielding weakly informative pri-
ors. The hierarchical model (4)-(5) assumes that the spectral sig-
natures within each class share a priori similar statistical properties
(through 7 and 6 1) while being flexible enough to allow to wide
range of positive spectral signatures.

Due to the nature of geometric structures in natural scenes,
we can often expect neighbouring surfaces of objects to repre-
sent the same spectral signatures. To model this prior belief,
we consider a Markov random field as a prior distribution for
each label z; ; given its neighbors Zy(; ;) ([Z]i; = zi;). ie.,
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f(zi,j\Z\(i,j)) = f(Zi’j|Zv(i7j)), where V(Z,j) is the neigh-
bourhood of the pixel (i,5) and Z\(;;y = {2 }ar )06,
More precisely, we consider a Potts-Markov model which been
widely used for multidimensional image segmentation (see [12, 13]
among others). Given a discrete random field Z attached to an
image with N 1pixels, the Hammersley-Clifford theorem yields
f(z) = m exp [3 Z(i,j) Z(i',j’)e\/(i,j) (i — Zi’,j’)]’

where 5 > 0 is the (unknown) granularity coefficient of the Potts
model, G(3) is a normalizing (or partition) constant and §(-) is the
Dirac delta function. While several neighborhood structures can be
employed to define V(i,5), the eight pixels structure (or 2-order
neighbourhood) will be considered in the rest of the paper.

3.3. Joint Posterior distribution

From the joint likelihood and prior model specified in Sections
3.1 and 3.2, we can now derive the joint posterior distribution for
T,A,Z,r = {r} and ® = {0, }, given the observed waveforms
Y and the value of the fixed hyperparameters ® = (7o, co,n).
Using Bayes’ theorem, and assuming prior independence between
T, A and Z, the joint posterior distribution associated with the
proposed Bayesian model is given by

f(T’ A’7 Z’ r7 ®|Y7 i))

X f(YlT?A? Z)f(A|Z7 o, I‘)f(T)f(I‘, @|<I>)f(Z) (6)

4. ESTIMATION STRATEGY

The posterior distribution (6) models our complete knowledge
about the unknowns given the observed data and the prior infor-
mation available. To perform joint depth estimation and spec-
tral classification of the MSL data, we use the following three
Bayesian estimators: 1) the minimum mean square error estima-
tor (MMSE) of the spectral signatures KMMSE = E[A]Y,®],
2) the maximum a posteriori (MAP) estimator of target ranges

e = ar%max f(t:;1Y,®) and 3) the MAP estimator of the
»
classification labels 2}"*" = argmaxf(z;;|Y,®). Note that we

Zi,5
use the classical MAP estimators for the target ranges and pixel
labels, as this estimator is particularly adapted to estimate discrete
parameters. In order to approximate these estimators of interest,
we adopt a fully Bayesian approach and consider a Markov chain
Monte Carlo method to generate samples according to the joint
posterior (6). More precisely, we use a Metropolis-within-Gibbs
sampler to generate sequentially the unknown parameters from their
conditional distributions and the samples are then used to approx-
imate the Bayesian estimators of interest (after having discarded
the first samples associated with the burn-in period of the sampler).
The remainder of this section details the main steps of the proposed
sampling strategy.

4.1. Sampling the target ranges

It can be seen from (6) that

F(TIAZ,Y) =[] f(tis]A,2,Y), Vi, €T. ©)
,J
Consequently, sampling the target ranges can be achieved by sam-
pling independently each depth parameter from its conditional dis-
tribution, i.e., by drawing randomly from {¢min, ..., tmas} With
known probabilities.
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4.2. Sampling the classification labels

In a similar fashion to the target ranges, sampling each label z; ;
from its conditional distribution can be achieved by drawing in
{1, K} with known probabilities. In our experiments we used a
Gibbs sampler implemented using a colouring scheme such that
many labels can be updated in parallel (9 steps required when con-
sidering a 2-order neighbourhood structure).

4.3. Sampling the spectral signatures A

By exploiting f(A'L‘sj |Y7 T7 Z: r, 6) = H( f()‘iaj |Y7 Ta Z: r, 6)
and the conjugacy of (3) and (4), sampling the spectral signatures in
A reduces to sampling from independent gamma distributions with
known parameters.

4.4. Sampling the hyperparameters r and ©

Using the conjugacy of (4) and (5b), the conditional distribution of
each 0y, is a standard inverse-gamma distribution. Thus, the ele-
ments of ® can be sampled independently (and in a parallel man-
ner) from their conditional distributions. Conversely, the conditional
distribution of 7y is a non-standard distribution and a Metropolis-
Hastings step with Gaussian random walk proposal is used here to
update each 7, in a similar fashion to [14]. Note that f (x| A, ©, ®)
is log-concave with corg > 1.

Note that a main advantage of Bayesian methods is that they of-
ten allow estimation of the appropriate amount of regularisation from
data. Indeed, there are several Bayesian strategies for selecting the
value of the regularisation parameter 3 in a fully automatic manner
(see [15] for a recent detailed survey on this topic). In this paper we
use the empirical Bayes technique recently proposed in [16], where
the value of f is calculated by maximum marginal likelihood esti-
mation. For brevity however, we assume [ is fixed in the remainder
of this paper.

5. RESULTS

We propose comparing the performance of the proposed method to
analyze the depth and spectral profiles of a approximately 5 x 5cm
scene (see Fig. 1 (a)) composed of different objects made of Fimo
clay and mounted on two tree leaves fixed on a painted backboard
at a distance of 1.8m from a time-of-flight scanning sensor, based
on time-correlated single-photon counting (TCSPC). The transceiver
system and data acquisition hardware used for this work is broadly
similar to that described in [9, 17-21], which was previously devel-
oped at Heriot-Watt University. The measurements have been per-
formed indoor, in the dark to limit the influence of ambient illumi-
nation. The scene has been scanned using a regular spatial grid of
170 x 180 pixels and L = 33 regularly spaced wavelengths ranging
from 500nm to 820nm. The histograms consist of 7" = 3000 bins
of 2ps, which represents a depth resolution of 300um per bin. The
power of the supercontinuum laser source has been adjusted from
preliminary runs and the per-pixel acquisition time is 10ms for each
wavelength. The instrumental impulse responses go,¢(-) were esti-
mated from preliminary experiments by analyzing the distribution
of photons reflected onto a Spectralon panel (a commercially avail-
able Lambertian scatterer). The proposed algorithm has been ap-
plied with Nmc = 3000 sampler iterations, including Ny, = 1000
burn-in iterations, which corresponds to a processing time of about
10 minutes for a Matlab R2014a implementation on a i7-3.0 GHz
desktop computer (16GB RAM). Fig. 1 ((b) and (c)) depicts ex-
amples of classification and range images, estimated with K = 30
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classes. Note that the marginal posteriors for the depth parameters
are concentrated in at most 3-4 consecutive bins (i.e., 0.9 to 1.2mm)
for almost all pixels. The results shows that in addition to the ob-
jects range estimation, it is possible to discriminate spectrally dif-
ferent surfaces (such as the different shades of green) and identify
the regions of the scene where a given material is present (e.g., the
green clays #2 and #4). It is interesting to mention that the clustering
method is also able to identify significant spectral changes due to the
orientation of the surfaces, as can be seen around the corners of the
other objects. Note that when increasing K, the additional spectral
classes are associated with isolated pixels at the sharp boundaries of
the objects. Conversely, decreasing the number of classes tends to
merge classes spectrally close (similar means and variances). For
completeness, Fig. 2 shows a joint range/spectral classification rep-
resentation of the 3D-scene including only the 14 main classes of
interests.

Fig. 1. (a): Standard RGB image of the scene composed of differ-
ent coloured clays mounted on tree leaves fixed on a green-painted
backboard. (b) Estimated spectral classification (K = 30 classes as-
sociated with different colors). (c) Estimated depth/range image in
millimetre (the reference range corresponds to the backboard range)

Fig. 3 depicts the projection of the estimated spectral signatures
(A4,;) onto the first three principal components of the principal com-
ponent analysis (PCA). The clusters are identified using the scene
colours used in Fig. 1 (b) and Fig. 2. First, this figure shows that the
tree leaves and the man-made objects can be clearly discriminated
spectrally (clear separation of the corresponding clusters). Second,
these results illustrate to ability of the method to identify clusters
with significantly different variances (the leaves on the right-hand
side present much more spectral variations than the clay-made ob-
jects). Finally, Fig. 4 compares the estimated spectra of the most vi-
sually similar objects of the scene, namely, the different green clays
and the two leaves. This figure clearly illustrate the benefits of using
MSL data for 3D scene analysis. Using several wavelengths gen-
erally helps estimating the depth profile. For instance, many of the
objects of the scene present low reflectivity coefficients between 600
and 700nm. Consequently, the number of detected photons at these
wavelengths and associated with these objects are much lower than
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Fig. 2. 3D distribution of the main spectral classes identified by the
proposed method (K = 30).

at longer wavelengths, which can jeopardize the depth estimation
if a single wavelength is used. By splitting the energy of the laser
source(s) across several wavelengths, the imaging system becomes
more robust to objects that are hardly visible (low reflectivity) at par-
ticular wavelengths, which can be useful to reduce acquisition times
while preserving imaging performance.

0.5

Fig. 3. PCA-based (projection onto the three first principal compo-
nents) representation of the estimated spectral signatures. The clus-
tering colours corresponds to those used in Fig. 1 (b) and Fig. 2.

6. CONCLUSION

We proposed a new Bayesian model and a joint depth estimation and
spectral clustering algorithm for 3D scene analysis from MSL data.
Assuming the ambient illumination can be neglected, the scene sur-
faces visible by the imaging system were clustered into groups shar-
ing the similar spectral signatures. Adopting a Bayesian approach,
prior distributions were assigned to the unknown model parameters;
in particular, a Potts model was used to model the spatial organi-
zation of surfaces in natural scenes. Although it implies a more
complex estimation strategy, adjusting the number of classes K and
including ambient illumination and dark count levels in the observa-
tion model (as in [9,21-23]) are the obvious next steps for a more
general application (especially for long-range imaging applications)
of the proposed method. In future work, it would be interesting to
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Fig. 4. Estimated spectral signatures of the spectral classes associ-
ated with different green clays and the green leaves.

account for the presence of distributed (multi-layered) targets, which
would yield multiple returns in the MSL data. Although range-based
scene segmentation is out of scope of this paper, coupling spectral
and geometric information from the scene (e.g., for multi-layer clas-
sification) is a clearly interesting problem.
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