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Abstract—The design of a cooperative protocol relying on both
cooperative relaying and jamming in order to provide security at
the physical layer of wireless communications is considered in this
paper. We suppose that pair of nodes is assisted by a number of
helpers in their communication, which either relay information or
cause harmful interference to an eavesdropper, at both stages of
the relaying protocol. Instead of maximizing the secrecy capacity,
a signal–to–noise ratio based approach is taken. Solutions for the
optimal weights used at each protocol and stage are sought along
with the optimal power distribution. To solve this problem, tools
from semi–definite and geometric programming are utilized, and
an iterative algorithm is proposed. Simulations show noticeable
gains (up to 50dB) compared to the non–cooperative case.

Index Terms—Physical layer security, cooperative transmission
protocols, cooperative jamming, optimization, wireless networks.

I. INTRODUCTION

Physical layer security has received considerable attention in
the past few years. The goal is to exploit the characteristics of
the wireless medium to enable legitimate nodes communicate
securely in the presence of eavesdroppers that could intercept
transmissions due to the broadcast nature of wireless networks.
The main metric of interest is the so–called secrecy capacity
[1], which is defined as the maximum achievable secrecy rate,
that is, the rate at which information may be transmitted with
perfect secrecy from the source to the destination. Therefore,
the secrecy rate controls the communication rate of a source–
destination pair so that their transmissions are perfectly secure.
In single antenna systems, the secrecy capacity is positive only
when the source–eavesdropper’s channel is worse; otherwise,
it is zero. The use of cooperative protocols, like decode–and–
forward (DF), cooperative jamming (CJ), and amplify–and–
forward (AF) help to overcome such a limitation [5], [14]. In
most cases, the availability of global channel state information
(CSI) is assumed [9], [14], [17]. Deriving the optimal helper
weights in closed form for a single eavesdropper is in general
not easy and becomes quite hard to solve when the number of
eavesdroppers increases, or when the cooperative protocols are
coupled with other schemes, like partner selection [17].

In this paper we consider a cooperative protocol that jointly
employs the DF and CJ schemes, referred to as DFCJ. There
exists a large number of works to study DFCJ–based protocols,
which could be classified according to whether they perform
jamming at both stages of cooperative relaying [6], [9], [10],
[16], [17], or a single stage [3], [8], [11], [12], [19], [20] where
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the vast majority of the works is considering the second stage
([3] being the exception). Our work assumes jamming at both
stages of the DF protocol, but unlike [6], [9], [10], [16], [17] it
assumes the existence of a direct link between the source and
the destination; another difference with all the aforementioned
works is that we aim at maximizing the signal–to–noise (SNR)
difference between the source and the eavesdropper, as this can
be proved to be more practical [13], e.g. when a closed–form
expression for the capacity of a particular channel is unknown
or quite complex to work with. Techniques from semi–definite
programming (SDP) relaxation are used to prove the optimal
jamming weights, subject to power, and nulling constraints at
the destination. An iterative algorithm, that relies on geometric
programming (GP), is designed to compute the optimal relay
weights and power allocation. The simulation results illustrate
the superiority of the proposed scheme.

The paper is organized as follows. Section II introduces the
notation, provides the background, and defines the cooperative
scheme that is investigated. The main results are presented in
Section III, where the relay weights and the powers to allocate
for each protocol are determined either in closed–form, or by
the proposed algorithm. The simulation results and concluding
remarks are given in Sections IV and V respectively.

II. SYSTEM MODEL

Let us consider a wireless network where a pair of nodes,
the source S and the destination D, need to communicate in a
secure manner in the presence of a passive adversary E that is
simply eavesdropping the information exchanged by these two
nodes. We further assume the presence of m helping nodes that
are assisting the source by either causing severe interference to
the eavesdropper, or by relaying messages to their destination.
We next assume that the number of jammers Jj , j “ 1, . . . , l,
and relays Ri, i “ 1, . . . , n, are fixed pm “ n ` lq, whereas
the helpers and the source are cooperating by means of the DF
and CJ protocols. The number m of helpers, the role of each
node, and the cooperative protocols being used are assumed to
be public information. All nodes are operating in half–duplex
mode and are equipped with a single omni–directional antenna.
The above setup is illustrated in Fig. 1.

Global CSI is assumed to be available at the trusted nodes so
that to allow for efficient cooperation [5], [14]; this implies that
not only are the channel gains of the links between the trusted
nodes considered to be known, but also those corresponding to
the eavesdropper. This assumption is common in practice, and
can be used to model honest–but–curious nodes (e.g. untrusted
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Fig. 1. The network model; the source is assisted by trusted nodes in order to
communicate securely with the destination in the presence of an eavesdropper.

relays, etc.) [1]. Next, we let h˚S , h˚R,i and h˚J,j (resp. g˚S , g˚R,i
and g˚J,j) be the baseband complex channel gains between the
source, the ith relay, the jth jammer and the destination (resp.
eavesdropper), for i “ 1, . . . , n and j “ 1, . . . , l; likewise, we
use a˚S,i or a˚J,ji for the channel gain between the source or the
jth jammer and the ith relay. Furthermore, all the channels are
assumed to undergo flat fading.

Suppose that P equals the total power budget available for
transmitting a symbol x, with E

“

|x|2
‰

“ 1, from the source to
the destination. If the source transmits x with power PS “ P ,
the signal at the destination and the eavesdropper is

yD “
?
PSh

˚
S x ` ηD (1a)

yE “
?
PS g

˚
S x` ηE (1b)

where ηD, ηE represent the noise at the receiver and follow the
circularly symmetric complex Gaussian distribution N p0, σ2q,
with mean 0 and variance σ2. The signal received at a relay is
similarly given by yR,i “

?
PS a

˚
S,ix` ηR,i. These expressions

correspond to the case of direct transmission (DT).

The cooperative scheme. In the sequel, letters in boldface are
column vectors x if lowercase, or matrices X otherwise. The
conjugate and conjugate transpose are denoted as x˚ and x:,
whereas }x}2 “ x:x . The notation X ą 0 (resp. X ě 0) is
used for positive definite (resp. semi–definite) matrices and In
for the identity matrix of order n.

The helpers cooperate with the source using a combination
of the DF and the CJ protocols; hence, the cooperative scheme
described next is divided in two phases. During the first phase,
source node S broadcasts the signal x by using power PS; since
this transmission could be intercepted by the eavesdropper, the
friendly jammers simultaneously broadcast a weighted version
of a jamming signal z(1); to be more precise, the jth jammer Jj
transmits ujz(1), uj P C. Let the power used by the jammers
during the first phase be equal to PJ,1. The jamming signal z(1)

is assumed to be known among the jammers, and independent
from the transmitted signal and the channel’s noise; likewise,
we assume that E

“

|z(1)|2
‰

“ 1. Let yR “ pyR,1 ¨ ¨ ¨ yR,nq
T ; the

signals at the receiving nodes are given by

y(1)
D “

?
PSh

˚
S x `

?
PJ,1h

:
Juz

(1) ` η(1)
D (2a)

y(1)
E “

?
PS g

˚
S x `

?
PJ,1 g

:
Juz

(1) ` η(1)
E (2b)

yR “
?
PSa

˚
S x`

?
PJ,1A

:
Juz

(1) ` ηR (2c)

where AJ is the lˆn matrix paJ,jiqj,i and u “ pu1 ¨ ¨ ¨ ulqT

satisfies }u} “ 1. Furthermore, the column vectors aS and ηR

of length n are comprised of the channel gains of the source–
relays’ links and the errors at the relays; the vectors hJ, gJ of
length l are similarly defined. The SNR at the ith relay is

γR,i “
PS |aS,i|

2

σ2 ` PJ,1u:RJR,iu
(3)

where RJR,i ě 0 is the lˆ l matrix aJ,ia
:

J,i whose rank equals
one, and aJ,i “ paJ,1i ¨ ¨ ¨ aJ,liq

T .
Both relays and jammers participate in the second phase; to

be more precise, only the relays that have successfully decoded
the signal x participate in the cooperative scheme. Each relay
re–encodes x and transmits the weighted version wix (for the
ith relay), wi P C, to the destination. Just like the first phase,
the set of jammers simultaneously sends the weighted version
of a signal z(2) that is independent of z(1) and η(1)

D , η
(1)
E , η

(2)
D , η

(2)
E ,

with the jth jammer transmitting vjz
(2), vj P C. The vectors

w “ pw1 ¨ ¨ ¨ wnq
T and v “ pv1 ¨ ¨ ¨ vlqT are also assumed

to have unit norm. If PR, PJ,2 are the powers used for relaying
and jamming in this phase respectively, then the signal at the
destination and the eavesdropper is

y(2)
D “

?
PRh

:
Rwx `

?
PJ,2h

:
Jvz

(2) ` η(2)
D (4a)

y(2)
E “

?
PR g

:
Rwx`

?
PJ,2 g

:
Jvz

(2) ` η(2)
E (4b)

where the sum of the powers used in both phases should not
exceed the total power budget P ; the power that is devoted to
jamming in the above cooperation scheme is PJ “ PJ,1`PJ,2.
As the destination and the eavesdropper receive transmissions
of x in both phases of the protocol, by using a strategy known
as maximal ratio combining (MRC) [7], they may achieve the
following SNR values

γD “
PS |hS|

2

σ2 ` PJ,1u:RJDu
`

PRw
:RRDw

σ2 ` PJ,2v:RJDv
(5a)

γE “
PS |gS|

2

σ2 ` PJ,1u:RJEu
`

PRw
:RREw

σ2 ` PJ,2v:RJEv
(5b)

where the Hermitian matrices RRD “ hRh
:
R and RJD “ hJh

:
J

(those of the eavesdropper RRE and RJE are similarly defined)
are positive semi–definite of rank one. Moreover, for the shake
of simplicity, we assume η(1)

D , η
(1)
E , η

(2)
D , η

(2)
E „ N p0, σ2q .

Instead of maximizing the secrecy capacity, our objective is
to maximize the difference ∆Γ “ ΓD ´ ΓE, which is referred
to as security gap [13], in the SNRs between the destination
and the eavesdropper; the terms ΓD, ΓE are equal to the values
of γD, γE in dB. Due to the use of the DF protocol in the above
scheme, we need to assure that the relays can correctly decode
the signals in (2c) they receive during the first phase. This is
achieved if the rate at each relay is no less than the rate at the
destination [5]; this in turn implies that the secrecy rate does
not exceed the minimum rate at the relays [14]. Hence, from
the above, we get the optimization problem

δ‹ “ max
p,w,u,v

γD

L

γE (P1)
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s.t. PS ` PR ` PJ,1 ` PJ,2 “ P (C1)

w:w “ 1 , u:u “ 1 , v:v “ 1 (C2)
γR,i ě γD , @i “ 1, . . . , n (C3)

with p “ pPS PR PJ,1 PJ,2q
T . In its full generality, (P1) is not

easy to solve as it is highly nonconvex and, due to the use
of the DF protocol, the decoding constraints are coupled with
the objective function.

III. SECURITY GAP MAXIMIZATION STRATEGY

In order to get either closed–form, or efficiently computable,
solutions of the optimization problem (P1), we introduce new
constraints; these concern the cooperative jamming protocol in
both phases of the scheme. In particular, we next require that
the interference caused by the jammers does not decrease the
value of the SNR γD at the destination. According to (5a), this
is achieved by adding the constraints

h:Ju “ 0 , h:Jv “ 0 (C4)

to the problem (P1). The advantage of doing so is that we can
directly determine the optimal solution for the jamming vector
used during the second phase of the scheme.

Proposition 1. The optimal vector v‹ of the problem (P1), s.t.
(C1)–(C4), is given by

v‹ “
}hJ}

2gJ ´ ph
:
JgJqhJ

}hJ}

a

}hJ}
2}gJ}

2 ´ |h:JgJ|
2

(6)

and let β “ |g:Jv‹|2.

Proof: Application of the nulling constraints (C4) to the
objective function of (P1) yields that the optimal value of (P1),
s.t. (C1)–(C4), is equivalently determined via

max
p,w,u

PS |hS|
2 ` PRw

:RRDw

PS |gS|
2

1`
PJ,1

σ2 u:RJEu
`
PRw

:RREw

1`
PJ,2

σ2 β

(P2)

according to (5); the value of β P R` is nonzero and it equals
β “ maxv v

:RJEv , s.t. v:v “ 1 and h:Jv “ 0. The solution to
the latter problem is the unit–norm vector corresponding to the
vector rv “ }hJ}

2gJ ´ ph
:
JgJqhJ [5]. The fact that the norm of

rv equals the denominator of (6) completes the proof.
The optimization variable u not only exists in the objective

function of (P2), but also in the decoding constraints (C3) due
to (3). As a consequence, the problem (P2) does not allow to
independently compute the optimal value of u as well. In order
to overcome this problem we define the non–negative constant
c P R` and impose the constraints

u:RJR,iu ď c2 , @i “ 1, . . . , n (C5)

to the problem (P2) that bound the interference caused to the
relays during the first phase of the scheme. If b “ mini |aS,i|,
then from (3), (5a), (C4), (C5) we see that the SNR at the ith
relay satisfies the inequality γR,i ě rγR “ PSb

2
L

pσ2 ` PJ,1 c
2q.

Similarly, due to (C2), we have that the SNR at the destination
satisfies γD ď rγD “ pPS |hS|

2 ` PR }hR}
2q
L

σ2. Hence, instead
of (C3) we subsequently impose the constraint rγR ě rγD so that

correct decoding at the relays is achieved. It is straightforward
to verify that the latter inequality leads to

θ1PJ,1 ` θ2PRPS
´1 ` PRPJ,1PS

´1 ď θ3 (C31)

where the coefficients are θ1 “ |hS|
2{}hR}

2, θ2 “ σ2{c2, and
θ3 “ θ1θ2 pb

2{|hS|
2 ´ 1q, which are all positive when b ą |hS|

i.e. if the relays are closer to the source than the destination;
we also define the vector θ “ pθ1 θ2 θ3q. The above allows us
to determine the optimal jamming vector that is used during
the first phase of the scheme, under certain conditions.

Proposition 2. Let l ą n` 1. Then, the optimal vector u‹ of
the problem (P1), s.t. (C1)–(C5), is the rank–one solution that
is obtained from the SDP problem

max
Uě0

tr
`

RJEU
˘

(7)

s.t. tr
`

U
˘

“ 1

tr
`

RJR,iU
˘

ď c2 , @i “ 1, . . . , n

tr
`

RJDU
˘

“ 0

where trp¨q is the trace function; moreover, let α “ |g:Ju‹|2.

Proof: Applying all the constraints to (P1) we get that its
optimal value, s.t. (C1)–(C5), is equivalently determined via

max
p,w

PS |hS|
2 ` PRw

:RRDw

PS |gS|
2

1`
PJ,1

σ2 α
`
PRw

:RREw

1`
PJ,2

σ2 β

(P3)

according to (5), where β is given by Proposition 1; the value
of α P R` is nonzero and is equal to α “ maxu u

:RJEu , s.t.
u:u “ 1, h:Ju “ 0, and (C5). By defining the rank–one matrix
U “ uu:, we transform the latter problem into its equivalent
relaxed SDP form (7) by dropping the rankpUq “ 1 constraint
[18]. In general, the optimal solution U‹ of (7) does not have
rank one; however, we next prove (using an approach similar
to [15]) that if l ą n` 1, we necessarily have rankpU‹q “ 1.
The Lagrangian of the SDP problem is

LpU ,V ,λq “ ´ tr
`

RJEU
˘

´ tr
`

V U
˘

` λ0

´

tr
`

U
˘

´ 1
¯

`

n
ÿ

i“1

λi

´

tr
`

RJR,iU
˘

´ c2
¯

` λn`1 tr
`

RJDU
˘

where V ě 0 and λ “ pλ0 ¨ ¨ ¨ λn`1q are the dual variables.
As optimal solutions should satisfy the Karush–Kuhn–Tucker
(KKT) conditions [2], the equation BL{BU “ 0 gives

V “ ´RJE ` λ0I l `
n
ÿ

i“1

λiRJR,i ` λn`1RJD (8)

where λ0, λn`1 ‰ 0 and λ1, . . . , λn ě 0. Let us first assume
that λ0 ă 0; then, λ0I l ´RJE has full rank, and in particular
we have λ0I l´RJE ă 0. The fact that l ą n` 1 implies that
the Lagrange multipliers must satisfy V ď 0 (V ‰ 0) by (8);
this however contradicts V ě 0, and hence it must be λ0 ą 0.
Furthermore, it should also be λn`1 ą 0; indeed, the SDP (7)
is equivalent to the one obtained if the last constraint changes
to tr

`

RJDU
˘

ď 0 since RJD,U ě 0. The above imply that

l “ rank

ˆ

λ0I l `
n
ÿ

i“1

λiRJR,i ` λn`1RJD

˙
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“ rank
`

V `RJE

˘

ď rank
`

V
˘

` rank
`

RJE

˘

“ rank
`

V
˘

` 1

and hence, the rank of V is either l or l ´ 1. From the KKT
conditions, any optimal solution should also satisfy V U “ 0;
thus, rank

`

V
˘

‰ l since otherwise U “ 0 would be obtained
as the optimal solution. By the fact that rank

`

V
˘

“ l ´ 1 and
that U lies in the null space of V , we eventually obtain the
desired result rank

`

U
˘

“ 1.

Corollary 1. With the notation of Proposition 2, assume that
c “ 0; then, the optimal vector u‹ is given by

u‹ “

`

I l ´BJB
#
J

˘

gJ
›

›

`

I l ´BJB
#
J

˘

gJ

›

›

(9)

where BJ “ phJ AJq and B#
J “ pB

:
JBJq

´1B:J is the Moore–
Penrose pseudoinverse of BJ .

Proof: If c “ 0, then (C4), (C5) suggest that it should be
B:Ju “ 0, for the l ˆ n` 1 matrix BJ “ phJ AJq. Then, (9)
is known to be the optimal solution —see e.g. [5], [13].

In order to prove the results of Proposition 2 and Corollary 1
we implicitly assumed that rankpBJq “ n` 1 (recall that we
had l ą n` 1), or that all the decoding constraints in (C5) do
contribute in shaping the feasibility set of (P1) —i.e. they do
not trivially hold. As an example, if we take c “ maxi }aJ,i}

none of the constraints in (C5) contributes, and then we obtain
u‹ “ v‹. The relays being far away from the jammers are not
affected to the same extent as those being close enough (in the
former case the magnitude of }aJ,i} is close to zero). Hence,
if l ď n` 1, we can set k “ n´ l ` 2 and take c as the kth
largest norm amongst the columns of AJ; this is next denoted
as c “ max(k)

i }aJ,i}. We can then apply Proposition 2, but with
n1 “ n´ k instead of n.

As a result of Propositions 1, 2, after having computed the
values of α, β, we end–up with the optimization problem (P3),
where the remaining constraints are (C1), (C31), and w:w “ 1
from (C2). An efficient way to solve this problem is to design
an iterative algorithm computing the relay weights and power
allocation independently and in an alternating fashion [5], [13],
[14] —see Alg. 1. These steps are further studied below.

Relay weights design. For a given power allocation vector p,
(P3), s.t. w:w “ 1, becomes a generalized Rayleigh quotient

max
w‰0

w: rRRDw

w: rRREw
s.t. w:w “ 1 (P4a)

where rRRD, rRRE ą 0, with rRRD “ PS |hS|
2In ` PRRRD and

rRRE “
PS |gS|

2

1`
PJ,1

σ2 α
In `

PR

1`
PJ,2

σ2 β
RRE .

Note that we can drop the norm constraint in (P4a), since the
objective function’s value is independent of }w}. It is known
that the optimal value of (P4a) is the largest eigenvalue of the
matrix rRRE

´1
rRRD. Furthermore, the optimal solution w‹ is the

unit–norm vector associated with the largest eigenvalue, which
is next denoted as λmax

`

rRRE
´1

rRRD

˘

. The values µ “ |h:Rw‹|2

and ν “ |g:Rw‹|2 are used below.

ALG. 1 The function DFCJmaxpq

input: hS, gS,RRD,RRE, α, β
initialization: p(0)

Ð p0, tk, µ, ν, δ(0)
u Ð 0, δ(´1)

Ð 2ε

1: while |δ(k)
´ δ(k ´ 1)

| ą ε do § tolerance ε
2: k Ð k ` 1
3: update ζ, ξ § using µ, ν
4: p(k)

Ð CGPsolve
`

p(k ´ 1); ζ, ξ,θ
˘

5: update rRRD, rRRE § using p(k)

6: w(k)
Ð GRQsolve

`

rRRD, rRRE

˘

7: update µ, ν § using w(k)

8: δ(k)
Ð γ(k)

D

L

γ(k)
E § from (5)

9: end

output: p‹
Ð p(k), w‹

Ð w(k), δ‹
Ð δ(k)

Power allocation. For a given relay weight vector w, and the
values µ, ν, the problem (P3), s.t. (C1), (C31), is re–written as
the ratio ζppq

L

ξppq of the posynomials ζ, ξ : R4 Ñ R [2]

max
p

ÿ

ePF 4

ζep
e

N

ÿ

ePF 4

ξep
e (P4b)

s.t. θ1
θ3
PJ,1 `

θ2
θ3
PRPS

´1 ` 1
θ3
PRPJ,1PS

´1 ď 1
1
P PS `

1
P PR `

1
P PJ,1 `

1
P PJ,2 ď 1

where F “ t0, 1u, and we define pe “ P e1S P e2R P e3J,1P
e4
J,2 . The

nonzero coefficients of the posynomials are given by

ζ1000 “ |hS|
2σ2 ζ0100 “ µσ2 ξ1000 “ |gS|

2σ2

ζ1010 “ |hS|
2α ζ0110 “ µα ξ0100 “ νσ2

ζ1001 “ |hS|
2β ζ0101 “ µβ ξ1001 “ |gS|

2β

ζ1011 “ |hS|
2αβσ´2 ζ0111 “ µαβσ´2 ξ0110 “ να

and they are all positive. It is known that maximizing a ratio of
posynomials belongs to the truly nonconvex class of problems
referred to as complementary GP, which are NP–hard [4]. The
problem formulation of (P4b) belongs to this class of problems.
A method to transform a complementary GP into a GP (which
is convex) has been proposed in [4], and is called the single
condensation method for GP. The main idea for transforming
the problem into GP is to approximate the denominator of the
ratio of posynomials with a proper monomial, but leaving the
numerator as a posynomial. The following result provides the
details of the approximation.

Lemma 1 ([4]). Let fpxq “
ř

i fipxq be a posynomial. Then

fpxq ě rfpxq “
ź

i

ˆ

fipxq

qi

˙qi

(10)

If, in addition, qi “ fipx0q{fpx0q @i, for any fixed positive
x0, then rfpx0q “ fpx0q and rfpx0q is the best local monomial
approximation to fpx0q near x0 in the sense of the first order
Taylor approximation.

Thus, in order to apply Lemma 1, we should solve (P4b) in
its equivalent form minp ξppq

L

ζppq, s.t. (C1), (C31). The above
lead to Alg. 1, where p0 is an initial value in the feasibility
set. The function GRQsolve computes the optimal relay weights
for a given power allocation that defines rRRD, rRRE, and solves
the problem (P4a), whereas the function CGPsolve computes the
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optimal power allocation by solving (P4b) using Lemma 1; its
details are provided in [4, §IV.C]. After computing the value
of the denominator ζpp(k ´ 1)q and the values of the monomials
for which ζe ‰ 0, the terms qe along with the approximation
rζpp(k ´ 1)q are determined by Lemma 1. The resulting problem
minp ξppq

L

rζppq, s.t. (C1), (C31), is then solved with an interior
point method.

IV. SIMULATION RESULTS

Throughout the simulations, helping nodes are assumed to
be randomly distributed in an 18m–radius disk with the source
at its center. The destination is fixed at 30m from the source,
and the eavesdropper is moving along the source–destination
line. A simple line–of–sight model is considered h “ d´

τ
2 ejϕ,

where d is the receiver’s distance, ϕ the phase offset, whereas
τ “ 4 is the path loss exponent. The noise variance σ2 is equal
to ´40dBm. The performance of the joint DF–CJ scheme is
evaluated based on Alg. 1, with a varying number of helpers,
distributions of relays{ jammers, and an 20dBm power budget.
Monte–Carlo simulations are performed, where each setup has
been repeated 102 times to get average results.

The DF–CJ protocol was compared against the DF and CJ
schemes, where all the helpers are relaying (resp. jamming) in
the null space of E (resp. D), and was shown to have superior
performance. Fig. 2 depicts the result for 16 helpers (4 relays,
12 jammers), where the figure at the bottom shows the power
allocated to the source. It can be seen that the DF–CJ protocol
gives a higher SNR gap ∆Γ (up to 50dB) than the rest of the
protocols while decreasing the helpers’ load. Indeed, when the
eavesdropper is close to the source, the DF protocol requires
almost all the power be allocated to the relays. This drawback
is eliminated with the DF–CJ scheme. Simulations have shown
that most of the power that is allocated to jamming is utilized
in the first phase of DF–CJ, in contrast to [8], [11], [12], [19],
[20], with the special case of DF–CJ with PJ,2 “ 0 being close
enough to the general DF–CJ in terms of performance.

V. CONCLUSIONS

The use of the DF and CJ cooperative protocols for securing
wireless communications at the physical layer in the presence
of an eavesdropper was studied in this paper. The CJ protocol
was applied in both stages. Due to the inherent difficulty of the
problem, suboptimal solutions are derived regarding the relay
weights, as well as the distribution of power amongst relaying
and jamming. The initial problem is transformed into a power
allocation problem that can be efficiently solved via geometric
programming. Ongoing work seeks to yield results by relaxing
the assumptions on jamming, and to couple the scheme with a
partner selection mechanism.
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