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Abstract—Binary descriptors have been very popular in recent 

years. One reason is that the algorithms that use them become 

computationally and memory-wise efficient. Furthermore, they 

tend to have some inherent robustness against some geometrical 

variations and against various brightness changes. These 

changes might result from both internal factors and external 

factors such as location of the light source, viewing angle, scene 

properties. In this paper, we describe a binary descriptor which 

proves to be robust to complex brightness changes such as 

gamma correction, noise and photometric distortions. The 

experimental results demonstrate that performance of the 

descriptor in object recognition and local image analysis tasks.  

Keywords - binary descriptor; robustness to photometric 

distortion and brightness change;  

I.  INTRODUCTION 

Mobile devices, such as smartphones and tablets, are 
increasingly used to run image understanding tasks in various 
applications. Examples include but not limited to object 
recognition for guidance in museums [1] and in-store 
shopping [2], matching for outdoors augmented reality [3], 
and detection of urban objects [4]. Image features and 
descriptors for these mobile applications must satisfy the 
constraints of limited memory and processor capacity. More 
importantly, since such imaging applications are typically 
under uncontrolled and real-life conditions, descriptors need 
to be robust to challenging illumination conditions, to 
distortions such as defocus and motion blur as well as 
geometric transformations.  

Recently, binary descriptors have attracted some attention, 
not only due to their computational simplicity and memory-
efficiency, but also, in some cases, due to their inherent 
robustness against image variability. One interesting class of 
binary descriptors result from a sequence of intensity-level 
comparisons within pixel patches, where greater-than and 
smaller-than types of observations are converted to logical 1 
and 0’s. These methods essentially probe the gray-level slope 
configuration around the patch center. The popular ones in the 
current literature are BRIEF [5], ORB [6], and BRISK [7]. 
These mainly differ from each other in (i) the geometrical 
pattern with which the pixel pairs are tested, e.g., whether they 
follow a pseudo-random pattern [5,6] or a specific crafted 
pattern [7], (ii) the choice of pixel pairs upon which 
comparison tests are made, i.e. if the pairs to be selected were 

learned [6] or not [5,7], (iii) and if the orientation 
compensation as a preprocessing step was included [6,7] or 
not [5]. It is reported in [8] that the binary descriptors, ORB 
and BRISK perform quite well under viewpoint changes, 
zoom and rotation effects and outperform BRIEF. On the 
other hand, under brightness changes, blur and jpeg 
compression, BRIEF outperforms its two competitors, ORB 
and BRISK. Notice that the sensitivity of all these descriptors 
to noise has to be mitigated by smoothing the input images. 

Among the more recent binary descriptors, one can 
mention ALOHA [9] and Bi-DCT [10]. ALOHA uses a 3-
level comparison of pixels of the local patch and slightly 
outperforms BRIEF for the same sized feature vector. Bi-DCT 
[10], originally proposed for dense stereo matching, is the 
method most akin to our proposed method. We work also on 
2D-DCT coefficients as in [10]. However while [10] groups 
all DCT coefficients in one frequency band, we select in each 
block size a fixed number of DCT coefficients according to an 
energy criterion. The binarization scheme in [10] is different 
in that they consider a two-bit, four-level quantizer, where the 
quantizer dead-zone corresponds to small amplitudes while 
the large coefficients have signed quantization. The small 
perturbations are thus eliminated with a threshold computed 
based on a Cauchy distribution model at each particular 
frequency layer. We follow a scheme which generates 1-bit 
codes by quantizing absolute value of DCT coefficients based 
on the mean value. This approach favors the selection of large 
and sparse coefficients. 

In this paper, we propose a new binary descriptor that is 
memory-efficient and highly robust to illumination changes 
and photometric distortions. This simple method can 
potentially take advantage of hardware for DCT compression 
and may even be applicable to compressed images directly. 
We dub it MB-DCT (Multiscale Binary-DCT). We evaluate 
its performance on databases to demonstrate its robustness 
against various geometrical and photometrical 
transformations both in the context of object recognition and 
interest point matching. Its performance is compared with its 
nearest competitors, BRIEF and Bi-DCT. We demonstrate 
that MB-DCT performs quite well in the presence of linear 
and nonlinear brightness changes and photometric distortions 
such as blur, noise and compression artefacts. 
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We describe the proposed method, MB-DCT, in Section 
2. In Section 3, we present the experimental setup used in the 
evaluation study. We give the experimental results in Section 
4, and draw conclusions in Section 5. 

II. PROPOSED METHOD 

Computation of MB-DCT for keypoints that were detected 

sparsely by a feature detector (i.e. SURF) or densely on a 

regular grid on images is implemented in three steps as 

visualized in Figure 1: (i) Feature extraction, (ii) Selection of 

DCT coefficients, (iii) Binarization of coefficients and their 

concatenation over scales. Details are given in the following 

subsections. 

A. Feature extraction  

DCT is known to have good energy compaction property 
for certain signal classes and a fast transform implementation 
[11][12]. These advantages of DCT have motivated us to use 
it in a new robust binary descriptor design. For each keypoint 
in an image, we delineate R number of concentric blocks, 
𝑃𝑖 ∈ ℝ𝑁𝑖×𝑁𝑖  of increasing size Ni×Ni, i=1, …,R, each centered 
on the keypoint, and compute their 2D DCT: 

𝐹𝑖(𝑢, 𝑣) = 

|
2

𝑁𝑖
𝑐(𝑢)𝑐(𝑣) ∑ ∑ 𝑃𝑖(𝑥, 𝑦) cos (

𝜋(2𝑥+1)𝑢

2𝑁𝑖
 )

𝑁𝑖−1
𝑦=0

𝑁𝑖−1
𝑥=0 cos (

𝜋(2𝑦+1)𝑣

2𝑁𝑖
) |  (1)  

where c(k)= 1 √2⁄  if k = 0, and 1 otherwise; u,v = 0, 1, ..., 
Ni-1 and  𝑁𝑖

2 constitutes to the number of pixels in the block 
of scale i. In the R sets of Ni×Ni DCT coefficients 

{F1(u,v)}
u,v=0
N1-1

, {F2(u,v)}
u,v=0
N2-1

, …, {FR(u,v)}u,v=0
NR-1

 we consider 

their absolute value, as in Eq. 1. 

B. Selection of DCT Coefficients 

We want to discard irrelevant DCT coefficients while 
keeping the more informative ones, in order to provide 
robustness to photometrical distortions and at the same time 
to have adequate discriminative capacity. The DC term, 
{𝐹𝑖(0,0)}𝑖=1

𝑅  is discarded in all scales to desensitize the 
feature vectors to illumination level. In the zig-zag ordered 

{Fi(u,v)}u,v=1
Ni-1  coefficients of a block at scale i, we take the 

first 𝛤𝑖  ( 𝛤𝑖 < 𝑁𝑖 × 𝑁𝑖) number of coefficients and discard the 
remaining ones. In this study we decide to assign  𝛤𝑖  to scales 
𝑖 = 1 to 𝑖 = 𝑅 as follows: For the first block of size 𝑁1 × 𝑁1, 
we extract the first 𝛤1 coefficients that correspond to a certain 
energy percentage. This energy percentage is chosen 

experimentally using a subset of images from databases used 
in Section IV. We iterate on the computations of Γ𝑖  till all 
blocks are represented more or less with the same energy 
level and at the same time we satisfy the constraint 
∑ 𝛤𝑖 = 𝐿𝑅

𝑖=1 , where L is the length of the descriptor. To 
compare with other methods such as BRIEF where the feature 

size is 256, L is selected as 256. Thus, letting 𝑍𝑖
𝑗
 denote the 

jth DCT coefficient in the zig-zag ordered list at scale 𝑖, the 
coefficient vector for that particular scale becomes 𝒇𝑖 =

[𝑍𝑖
1, 𝑍𝑖

2, … 𝑍𝑖
𝛤𝑖]. 

C. Construction of a Binary Decriptor 

Finally, we binarize the selected and ordered 𝒇𝑖  DCT 
vectors by mean quantization. Assume that {𝜇1, … , 𝜇𝑅} are 
the mean values of the selected DCT coefficients at scales 1 
to 𝑅, then the final binary descriptor computed for each scale 
𝑖 will be as in Eq. 2 and where 𝑗 = 1, 2, … , 𝛤𝑖 .  

                             𝑏𝑖
𝑗

= {0   if   𝑍𝑖
𝑗

< 𝜇𝑖    

1  otherwise    
           (2) 

Here, mean quantization is used since it is sensitive to 
large coefficients, so that sparser but possibly more 
discriminative coefficients will pass the thresholding test. 
The final binary descriptor for a given keypoint is obtained 
by concatenation of binarized DCT coefficient sets at each 

scale [𝑏1
1:𝛤1  𝑏2

1:𝛤2 … 𝑏𝑅
1:𝛤𝑅].  

III. EXPERIMENTAL SETUP 

Oxford dataset. We first evaluated the proposed 
descriptor on the Oxford dataset [13] to demonstrate 
robustness of MB-DCT under the transformations of blur, 
illumination changes, viewpoints changes, and jpeg 
compression. Oxford dataset has been a standard dataset to 
evaluate descriptors’ capabilities under geometric and 

 
Figure 1. Framework for proposed MB-DCT 

 

 

  

Figure 2. Synthesized images from image 6 of “Leuven” class; (a) 

squared brightness change, (b) square rooted brightness changes. 
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photometric transformations. We used six image sets from 
Oxford, that are corrupted by blur (Bikes, Trees), 
illumination changes (Leuven), Jpeg compression artefacts 
(UBC), and viewpoint changes (Wall, Graffiti). Each image 
set consists of six images with increased degree of mentioned 
transformations. Additionally, in order to examine the 
method for more complex nonlinear brightness changes we 
also created synthetic images of the class ‘Leuven’ similarly 
as in [14], that is we min-max normalize the 2nd to 6th images 
into [0, 1] range, and apply square and square root operations 
on them. As an example of synthetic images, the 6th image is 
presented in Fig. 2.  

The built-in SURF implementation in OpenCV is used for 
keypoint detection. We use the same keypoints for all binary 
descriptor methods inside the image region that excludes 
border bands of 64-pixel width. This width corresponded to 
half of the largest block size (NR = 128) used in the 
computation of MB-DCT. We opted for cropping the pass-
partout, rather than padding the images, e.g., by symmetric 
reflection for this size. The number of detected keypoints 
ranged from 600 to 4000 depending on the test images, which 
was sufficient to make a reliable evaluation. We used the 
same Nearest Neighbour evaluation metric as in [5], where 
we detect N keypoints in the first image and infer N 
corresponding points on the second image by using the 
published ground truth data. We then compute the set of left-
right matches of the 2N descriptors by considering nearest 
neighbours of one side to the other. If the matched points are 
within a tolerance of 2 pixels from true locations, we call 
them as “correct matches”. We finally compute the 
recognition rate as the number of correct matches/all 
matches. In [5], it is stated that this procedure might 
artificially increase the recognition rates, however since the 
same procedure is applied for all kind of descriptors, relative 
rates are still reliable. 

Coil-20 dataset. We evaluate MB-DCT performance for 

object recognition by implementing a Bag-of-Words type 

encoding on COIL-20 “processed” corpus [15], which 

contains 20 object categories, each having 72 images with a 

5 degree pose interval between. The images are sized 

128×128 pixels, and symmetric padding of 64 pixels is 

applied to accommodate the pixels on boundaries. We work 

on dense points in this experiment with stride equal to 3 

pixels. The testing setup named as coil20_24 in [16] is 

followed, that is, the images of each object category with 

pose interval of 15 degrees are taken into the training set and 

the remaining ones into the testing set. We randomly sample 

a subset from the training set, densely extract MB-DCT 

vectors from these images and then input them into a 

clustering algorithm to compute the visual dictionary. For all 

methods, i.e., BRIEF, Bi-DCT, and MB-DCT, we have used 

the same chosen subset of training images for building their 

respective visual dictionary. K-means clustering was used 

based on Hamming distance and the dictionary size was set 

at 512. To test the performance of the proposed method in the 

presence of photometric distortions, we use original images 

in the training set and apply distortions, as in Table 1, to 

create test images. A sample image and images under these 

distortions are presented in Figure 3. 

IV. EXPERIMENTS 

We evaluated MB-DCT performance for two sizes of the 

dictionary words, namely 256 and 192 bits, dubbed 

respectively, MB-DCT-256 and MB-DCT-192. Notice that in 

both cases, the dictionary size is kept constant at 512 atoms, 

and the number of concentric blocks is set at R = 6.  In 

particular, the number of DCT coefficients chosen from the 

R concentric blocks in increasing size were fixed as: ΓMBDCT-

256={6,16,32,48,64,90} and ΓMBDCT-192={16,24,32,35,39,46} 

number of coefficients are kept after zig-zag ordering of 

coefficients computed in blocks sized as NMBDCT-

256={4,8,16,32,64,128} and NMBDCT-192={8,16,24,32,48,64} 

respectively for MB-DCT-256 and MB-DCT-192. We 

implemented Bi-DCT in MATLAB by the default parameters 

given in [10] and we executed BRIEF-256 (bits) in OPENCV 

library with the default parameters to make a comparative 

study. 

A. Performance on the Oxford Dataset 

The recognition rates for the test sequences Bikes (blur), 

Trees (blur), Leuven (illumination changes), UBC (jpeg 

compression), Wall and Graffiti (viewpoint changes) are 

given in Figure 4. We see that while Bi-DCT-102 is worst 

among all, proposed MB-DCT-256 and MB-DCT-192 

performs quite well in increasing blur distortion even with 

descriptor length smaller than that of BRIEF-256. While for 

the brightness changes and synthesized Leuven sequences, 

     

     

Figure 3. Synthetically applied distortions on a COIL-20 image 

(Please see Table 1 for further information). (a) Original image, (b) 

Blurring: PSNR=17.7 SSIM=0.5 (c) AWGN: PSNR=10.2 SSIM=0.2 
(d) Contrast decr.: PSNR=11.9,SSIM=0.4 (e) Contrast incr.: 

PSNR=15.1,SSIM=0.9 (f) (Lin.) Brigh. Decr.: PSNR=14.7 SSIM=0.8 

(g) (Lin.) Bright. Incr.: PSNR=12.5 SSIM=0.5 (h) (Nonlin.) Sq. 
Bright.: PSNR=16.4,SSIM=0.9, (i) (Nonlin.) Sq. root. Bright.: 

PSNR=16.6 SSIM=0.9 (j)JPEG compr.: PSNR=20.5, SSIM=0.8 

 

TABLE I.  PHOTOMETRIC DISTORTIONS  TO GENERATE TEST IMAGES  

(b) Blur: Apply Gaussian filter with 

σ = 3. 

(c) Additive White Gaussian  Noise 

(AWGN): with σ=110 

(d) Contrast decrease: Linearly map 

intensity values in [0,255] to 

[88,168]. 

(e) Contrast increase: Linearly map 

intensity values in [88,168] to 

[0,255]. 

(f) (Linear) Brightness decrease: 
Subtract r percent of image mean 

intensity from each pixel, r: 80%. 

(g) (Linear) Brightness increase: 
Add r percent of image mean 

intensity to each pixel, r: 80%. 

(h) (Nonlinear) squared brightness 
change: Take square of intensities. 

(i) (Nonlinear) square rooted 
brightness change: Take square root 

of intensities. (j) JPEG compression: apply with 

quality parameter 2. 
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MB-DCT gives comparative results with BRIEF-256, 

BRIEF-256 outperforms MB-DCT for viewpoint changes.  

 

B. Object recognition performance on the Coil-20 Dataset 

In this experiment we explore the behaviour of the 

methods for object recognition task when test images were 

subjected to significant amount of distortion. It should be 

noticed that filtering is not applied before computing the 

proposed MB-DCT descriptor and Bi-DCT [10], while box-

filtering is applied for BRIEF as default in OpenCV (9×9 

sized box filtering for 48×48 sized image patches). Object 

recognition is accomplished by a simple K-Nearest 

Neighbour classifier with 5-fold cross validation using chi-

square distance. The results are presented in Table 2.  

For the brightness changes MB-DCT gives comparative 

results with BRIEF-256. Moreover, MB-DCT performs quite 

well when distortions such as noise, blur and jpeg 

compression exist without applying filtering even in lower 

lengths, e.g. MB-DCT-192.   

V. CONCLUSION 

In this study, we have proposed a binary descriptor called 
MB-DCT and evaluated its performance on Oxford dataset 
and COIL20 object recognition datasets. We demonstrated 
that the proposed method is highly robust to blur and noise 
artefacts and gives results comparable to BRIEF in the 
presence of complex brightness changes even for shorter 
descriptor lengths. MB-DCT method, however, is not 
designed to be robust to geometrical transformations such as 
rotation and viewpoint changes. We are presently 
investigating a max-pooling approach of DCT coefficients 
from rotated patches for rotational invariance.  
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