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Abstract—The manner and order in which data is presented
to a human observer can lead the human to make dramatically
different decisions. This raises a question on how to best
present data to an observer to achieve the best decision-making
performance and minimum adverse effects. In this paper, we
present a general framework to model cognitive biases that
interfere in the human decision making process. We examine the
problem of ordering observations in binary sequential detection.
Our treatment considers the limited cognitive effort exerted by a
decision-maker and the effect of the observations along with their
distributions on the stopping time and accuracy of the sequential
test. The complexity of the ordering algorithm is linear in the size
of the observation set. Both the average time to make a decision
and the probability of decision error are minimized.

Index — Information Display, Decision-making, Sequential
Test, Cognitive biases, Cognitive Effort

I. INTRODUCTION

Humans process information sequentially and the order in
which they examine information can influence their decision.
Different orderings affect both the accuracy of the decision
and the time it takes to make a decision [1]. Information
pieces are collected one after another, and once a sufficient
level of confidence is achieved a decision is made. It is thus
important to select the correct ordering of information to be
presented to a human to promote “optimal” outcomes. The
fact that the design of data display modifies the behavior
and reasoning of a person is revealed in several domains.
Institutions of the civil society conduct campaigns in which
they properly choose their slogan, messaging tools and
activities to initiate an action towards the public welfare.
A doctor selectively presents the test results to the patient
to influence the psychological state of the patient and the
willingness to follow a certain treatment. Ads are often
designed to emphasize exclusive features of a product over
others for the private benefit of the business.

This work derives the proper ordering of the observations
in binary sequential detection problems so that a decision
on the true hypothesis is made quickly on average with a
minimum probability of error by mitigating the effects of
cognitive biases. A byproduct for ordering the observations
is the identification of what minimum subset of a large
dataset should be selectively displayed to an observer in
order to initiate a decision but still minimize its error
probability. While sequential detection is well-explored in
the literature [2] [3], it is evident in the above examples
that the decision-maker is a human rather than a machine.
The two are different in several aspects. For instance, a
machine considers all the sample distributions when setting
the thresholds of the sequential test, but this cannot be
expected for a human of limited processing capabilities. In
addition, while the machine designs its decision thresholds
by evaluating the sampled distributions, a human is highly
affected by the observations themselves even under rational
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processing. Therefore the same N observations presented to a
machine in different arbitrary orders do not alter its decision,
which may not be the case for a human observer. The work is
thus meant to be a first step towards accounting for cognitive
biases at the time of designing the information display. The
distinction made on purpose between the sampler of the
data and the decision-maker is to push it forwards towards
man-and-machine symbiosis.

The problem of ordering the observations in sequential
detection is treated in [4]. The best ordering is defined to be
the one that minimizes the average sample number (ASN).
In that reference, the optimal ordering is determined a priori
based on the known distributions of the data under the
two hypotheses. In contrast, here we examine the real time
ordering problem of an available observation set. A similar
work to [4] is found in [5] and [6] except that a cognitive
bias model is associated with the sequential test. In [7], the
authors study the ordering of test items and its effect on the
ability of humans to classify subsequent items presented to
them. The purpose behind the work is to advise new learning
models for humans in classification problems. In [8] and [9],
the sequential acquisition of different information is assumed
to be used by a rational decision-maker to update utility
functions according to which the latter makes selections
among various products. The framework is then extended to
analyze how economic information signals propagate through
the market.

This paper makes two main contributions. First, we propose
a new formulation for the sequential test, which may provide
a better model for human decision-making as its thresholds
capture the time-varying and observation-dependent user’s
risk profile. Second, we show how to optimally order the
N observations for sequential testing with minimal error
and ASN by inspecting at most N permutations of the
N! = N x (N — 1) x --- x 1 possible permutations of
the observations. This is a major breakthrough as previous
research indicated that the optimal solution of a real time
observation selection problem for the traditional sequential test
has combinatorial complexity [10]. The paper is organized
as follows. In Section II a formal statement of the problem
is made. In Section III we present the human sequential
test model. The ordering of the observations is studied in
Section IV. A human reaction to sampled information is
simulated against a sequential probability ratio test (SPRT)
in Section V. Section VI concludes the paper.

II. PROBLEM STATEMENT

Available is a set of information that is assumed to convey
one of two possible hypotheses H; and Hy. The information
should be optimally displayed to the human observer to
minimize an objective function that captures the average
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time that the observer will take to make a decision and the
cost of making an incorrect decision. We recognize that
different observers have different mental capabilities and
prior experiences. Therefore, an estimate of the observer’s
reaction to the information display or way of processing the
different items along with the parameters of any fitted bias
model are assumed to be obtained through prior testing and
interviewing. The problem becomes as follows:

Given a vector of samples Y7,..., Yy of respective distribu-
tions f1(Y1|Hyg),. .., fn(Yn|Hy) under hypothesis Hy, k €
{0, 1}. The designer of the information display presents sam-
ples sequentially and in a predetermined order to the subject
who is only aware of the sample distributions. The selected or-
der is designed to minimize the average time the observer takes
to make a decision matching his or her risk profile roughly
known by the designer. The observer is assumed to be unaware
of the fact that information is being reordered and therefore
uses the original density functions of the observations.

III. HUMAN SEQUENTIAL TEST

In this section we define a novel sequential test based on
which the selection and ordering of the samples are derived.
The test is novel in the sense that it utilizes both the past
samples and their distributions to design thresholds for future
samples. Still, it does not run into the computation of joint
distributions that will overload a human and are typically
avoided in a natural thinking process . The test also directly
reflects the impact of observation ordering on its thresholds
and thus the stopping time. Since humans adjust their decision
thresholds periodically as more information is collected, the
test stands as a candidate model for human decision-making.

In a Bayesian setting, a log-likelihood term [; of Y; is defined

as
I fi(Yi|H1)>
=l (fi(Yz‘|Ho) M

Given the independence of the observations, the cumulative
log-likelihood metric up to time ¢ is given by

L= @)
k=1

For independent identically distributed (iid) observations Y;,
SPRT is the optimal sequential test. Its higher and lower
thresholds are maintained constant and given respectively
by B = In glpif"f and A = (15%F2. Pr is the design
probability o e design probability

a false alarm and P, is t
of a miss. Generalized SPRT (GSPRT) is optimal for non-iid
observations and has time-varying thresholds A; and B;.

There are two limitations for using a Bayesian test to model
human-decision making. First the update of the sufficient
statistic in (2) does not model how humans generally update
their beliefs. While we define the human sequential test and
the observation-ordering algorithm according to (2), we show
how they can be extended to more general belief models in
Section IV-C. The second limitation, to be treated in this
section, is that Bayesian tests like SPRT and GSPRT derive
their thresholds from the joint distribution of L; over time @
and do not consider the particular values of the observations

Y; in their computation. On one hand, an observer with
constraints on time and thinking and lack of knowledge of
the upcoming samples aborts such computations. On the
other hand, these computations do not accurately reflect the
human thinking process. For instance, in [11] an interviewer
aims at estimating the willingness-to-pay (WTP) of a person
by inquiring a response to a sequence of bid values. It is
shown that the order in which the bid values are presented
to the interviewee actually modifies the decision-threshold
according to which the interviewee responds with ’yes’ or
'no’ for the presented values. Since this is the case even for
the same sequence of bid values, decision-thresholds have to
be observation-dependent.

Let p;—1 denote the prior probability of H; at the start of step
1— 1. Upon intaking observation Y;_i, prior p; can be updated
recursively:

pi—1 X fi—1 (Yi—1|H1)
L —pi-1) X fi—1 (Yie1|Ho) +pi—1 X fi1 (Yi—1|H(13))

Pz':(

Note the dependence of p; only on observations up to time step
i — 1. We re-define the instantaneous probabilities of a false
alarm and a miss Pr, and Py, to include the updated priors.
Let F/(L;|H;, L;—1) be the cumulative distribution function
(cdf) of L; under hypothesis H;,j € {0,1}, conditioned on
L;_1. We are allowed to condition on I; _; since observations

Yy,...,Y;_1 are known at step 7. The ipstantaneous probabil-
ities of false alarm and miss Pp, and Py, are given by

Pr, = (1—p;) x (1 = F/(Bi|Ho, Li_1)) 4)

Py, = pi X F (A|Hy, Li_y) %)

ZE’Fi and AI—C’Mi represent the observer’s risk profile. By main-
taining Pr, and Py, constant over %, past observations will
alter the prior p; in (4) and (5) and consequently thresholds
B; and A;. Therefore the test thresholds become directly
correlated with the observer’s actual decision thresholds since
they capture both the observer’s risk profile and the impact of
the past observations on making a decision. Note that different
observation sequences up to stage ¢ yield different thresholds
and may produce different outcomes.
Let F;(1;]H;) be the cdf of /; under hypothesis H;, j € {0, 1}.
We have
Fi/(X|Hja Li—l) = Prob Lz < X|Hj, Li—l)
= Prob Li,1 + ll S X|Hj, Lifl)
= Prob (lz § X — Li_1|Hj, Li—l)
=F; (X — L;—1|Hj)
where the second equality in (6) follows from (2). Define
B} =B;— Li (N
Aj=Ai—Li ®)
Then using (4), (5) and (6) we have
P, = (1= pi) x (1 = F;(Bj|Ho)) ©)

Par, = pi x F;(A}Hy) (10)

Ho) Y

—~~

(6)

Consequently, at every step ¢ we have

B = ! < PF'i

' L —pi
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Al =F! (PM (12)

T .
%

>

where F;_'(l;|H;) is the complementary cdf of I; under
Hj;,j € {0,1}. Given (11) and (12) the sequential test is
defined as follows: at step ¢, if {; > B}, H; is declared true.
If [; < Ag, Hy is declared true. Otherwise, a new sample
is collected and the test repeats. The sequential test proceeds
in real-time, which is a further requirement to model human
decision-making.

IV. OBSERVATION ORDERING

Inspecting (11) and (12), thresholds B; and A} are de-
pendent on p; and thus on past observations Yi,...,Y; 1.
This implies that different samples displayed to the observer
will generate different future thresholds and consequently
different stopping times. However, since P, and Py, in (9)
and (10) are maintained constant, selections and orders for
which the test statistically terminates earlier lead to better
error performance. Therefore, it is required to select the subset
of observations and the order of its elements so that the test
terminates as soon as possible.

A. Non-recursive expression for p;

To derive the observation ordering, we first obtain a non-
recursive expression for p;. Note that (3) can be rearranged
into
fic1(Yi—1|H1)
fi—1(Yi—1|Ho)

Pi=— Fioa(Yi_1|H1) (13)
et Sl s s ety o)
Using (1) we have
exp(li—1)
bi = (14)
pil —1+exp(l;_1)

A similar expression of p;_; to that of p; can be obtained
from (14) as function of p; o and [;_5 and then substituted
directly into (14) to give

exp(li—1 +1;—2)

i = 5)
p piliz —1+exp(li—1 +1i—2)
Proceeding recursively on % and using (2) we thus have
exp(L;_
pi = L) (16)

-+ —1+exp(Li-1)

where pg is the prior probability of H; before any data is
observed.

B. Selection and ordering of l;

We choose to define the selection and ordering on [y, ..., [y,
which can be mapped back to Yi,...,Yy. We impose the
constraint B, > 0 > A! for all 4. Let I; be the last log-
likelihood term upon which the test terminates. From (16)
p; is monotonically increasing in L;_;. Since F; in (11)
and (12) is a cdf, B] and A} are monotonically decreasing
in L;_,. Therefore, there always exists a unique sum L(*)
defined implicitly as the solution to

li = B |pi LY
li = A} |pi [LO

if [, >0
if {; <0

a7

where we emphasize that B} and A/ are functions of p; which
is in turn a function of L;_;. Using (11) and (12) we have

p(l) =p; {L(Z)} — P;zc(lz\Ho) . (18)
7Fﬁ(li‘}?{1)’ if [; <0
and using (16), L is then given by
LO = |2~ (19)

When [; is large enough in absolute value, I; and L") are
opposite in sign. Introducing /; as the first log-likelihood term
is enough to terminate the sequential test. Else, L(*) 4-¢ should
accumulate in L;_; before [; is introduced as the last term,
where € is arbitrarily small and has the same sign as /;. This
accumulation should be done in minimum time steps. Since
l; could be any term of l,...,[y, the algorithm becomes
as follows: split set I1,...,Iy into the set of positive log-
likelihoods P = {l,,,,...,l,,,} and the set of negative log-
likelihoods N = {l,,,,...,ln, .}, where N’ is the number
of positive log-likelihoods in the original set. Compute the
N threshold sums L™, ... L(V) using (18) and (19). If any
of those thresholds is opposite in sign to the corresponding
log-likelihood term I;, select that term and ask the observer
to make a decision in the first time step. Else, for each [;
consider set P\l; if I; > 0 and set N'\l; if I; < 0. If the first
case is true, select from P\l; the largest positives whose sum
will exceed L. If the second case is true, select from N'\[;
the largest negatives whose sum will drop below L(*). Append
l; to the selection at the end. Repeat the procedure for all NV
possible [; terms. Of the N obtained sequences, the one with
the least number of samples is the global solution. If different
outcomes are yielded by two solutions of the same length, the
sequence in favor of the hypothesis suggested by the whole set
of log-likelihood terms is selected. If no sequence terminates
the test, the designer either chooses whole set P or whole set
N but without intermixing. This way both choices produce
extreme values of p;. Thus, in the worst case, N sequences
are examined before the global solution is identified, which is
too fast compared to combinatorial or exponential procedures
in N that do the selection. The solution is then mapped back
to the observations, which are presented sequentially to the
observer.

C. Non-Bayesian Belief Update

We now show how the human sequential test model and
the observation-ordering algorithm can be extended to capture
different forms of belief-updates. In [1] the authors assume that
belief updating is an anchor-and-adjustment process, where the
anchor is the current belief S;_; at time index 7 — 1, and the
adjustment is brought by the i*" piece of evidence x; as

Si = Si_1 + wl(s(xz) — R) (20)

This is to say that a personal evaluation s(z;) of z; is
compared to a reference point R, and the gap weighted by w;
changes the degree of belief in a hypothesis to S;. Typically
0 < w; <1 and may be a function of S;_;. Now let R = 0,
and w; = 1 Vi . Notice that (20) becomes of the same form
as (2), where S;_1, s(x;) and x; are the counterparts of L;_1,
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l; and Y; respectively. Since L; is a sufficient statistic, the
human sequential test can be extended to model non-Bayesian
belief updates. As an illustration, we replace L;_; in the
expressions of p;, B, and A} with L}_, given by

i—1

L= l

i-1 = Witk
k=1

where 0 < wy, < 1. From [1], a monotonically non-increasing
sequence wy, in k models the primacy effect, where additional
pieces of evidence for the same hypothesis become less
weighted over time. Assuming independence between wy and
l;, the same observation-ordering algorithm may be applied.

21

V. NUMERICAL ANALYSIS

To inspect the impact of ordering the observations on the
accuracy of the decision-making, it is required to have a refer-
ence sequential test for comparison. Since in the literature only
SPRT is optimally designed, the observations are chosen to be
Gaussian iid. Then Yi,..., Yy follow Nx(u,02) under H;
and Nz (0,0?) under Hy, where the first argument in N’z (-, -)
is the mean of the distribution and the second argument is its
variance. Thresholds B; and A/ are given by

(22)

= (23)

A;:Q_l (1_P]\/[i> XH_A'_LQ
(o

where Q~!(z) is the inverse Q-function. Let N = 20 and
£ = 1. We simulate the sequential test in MATLAB under
true hypothesis H;. Though H; is the true hypothesis, we let
po = 0.5. We vary the specifications of the false alarm and
miss probabilities and inspect the resultant variation of the
obtained error probability of a miss versus the ASN. At every
setting, all sequential tests are run M = leb times to average
the results. The variation of the test miss rate versus the ASN is

0.3 T

dered
SPRT-ordered
== = shuman-ordered

o2sfV

probability of miss

-~ —

. e
0 2 4 6 8 10 12 14 16 18 20
ASN

Fig. 1. Miss probability versus ASN for SPRT and the human sequential test
model for unordered and ordered observations.

shown in figure 1. For the case where no order is applied to the
log-likelihood terms for either test, lower error probabilities
are attained for higher sample numbers and thus the curves
are monotonically decreasing. Since the SPRT considers all
observation distributions starting from time n = 1 to oo in the
design of its thresholds, it outperforms the human sequential
test model unless the observer is ready to take enough samples.

While similar performance is attained for high ASN, the SPRT
maintains lower error probability for decisions made after a
few number of samples. This is because the thresholds of the
SPRT are fixed, while the thresholds set by a human subject
are observation dependent. Since no order is imposed on the
observations, decisions made early tend to follow the first few
encountered samples and thus hold a higher error probability.
Note that too early stopping times are recorded only for the
human sequential test model with high error. The curves are
generated by varying the specifications Py, and P, for the
human sequential test and Py; and Pr for SPRT from about
0 up to 0.1.

Since the human thresholds are dependent on the encountered
observations, ordering the latter should reduce the randomness
of the stopping time of the sequential test that is source of
high error probability. For the human sequential test model, we
apply the order defined in section IV-B. This order is intended
to both minimize the test error probability and stopping time.
For fair comparison, an observation ordering should also be
defined for SPRT. Since the SPRT thresholds are constant and
using (2), the earliest stopping time of the SPRT is obtained
by introducing the log-likelihood terms in favor of a single
hypothesis, and in non-increasing order of absolute value. Two
such orders are possible corresponding to H; and Hy. For both
the human sequential test and the SPRT, the shortest of the
two orders is selected. If two orders have the same length, the
designer computes the overall cumulative log-likelihood of all
the observations and selects the order in favor of the suggested
hypothesis.

Given the two observation orderings as described for the
human sequential test and the SPRT, we examine again the
variation of the test miss rate versus the ASN upon varying the
specifications Py, Pr,, Py and P from about O up to 0.1.
The curves are appended to figure 1. We notice that for both
tests the curves pushed towards lower error probability and
lower ASN. Moreover, zero error probability is now attained
for an ASN below N = 20. This improvement is brought by
the ordering of the observations. The threshold ASN above
which the human sequential test and the SPRT match in
performance is now reduced. For too early stopping times, the
human sequential test counter-intuitively maintains low error
probabilities. This represents the case where the observer does
not target low error probabilities Pys, and P, and thus is
ready to believe any hypothesis conveyed by the observations
quite fast. In such a case, the observer is effectively follow-
ing the decision made by the ordering algorithm which has
access to the entire observation set and is therefore making
a relatively reliable decision. In addition, the designer of the
information display is benevolent and aims at reducing the
decision errors that might be committed by the observer. Thus
the designer presents a minimal information selection that
favors the same hypothesis optimally suggested by the whole
information set. The resultant performance drastically varies
from the case where the samples are not ordered. It also differs
from that of SPRT. Though SPRT is the optimal sequential
test for iid observations, we note that the observations are no
more iid when they are ordered, for which case SPRT is no
more the optimal test. Still the maximum error probability for
SPRT is less than that for a human sequential test. For large
values of ASN, the curve captures the performance of less
gullible human observers. As such observers see more data,
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their performance asymptomatically approaches that of the
SPRT despite the fact that they suffer from cognitive biases,
establishing the effectiveness of the proposed method.

Each pair value (miss rate, ASN) in figure 1 corresponds to

0.05
0.045 “\ humar
45 |- = thuman
4
0.04f
0.035
0.03

0.025 -

probability of miss

0.02 -

0.015

0.01 -

0.005

0= -
102 10

10 10* 10¢ 10* 107 10

desired error probability

Fig. 2. Overall miss probability versus input/desired error probability for SPRT
and the human sequential test model for ordered observations.

an error pair (Pyy,, Pr,) targeted by the observer or (P, Pr)
specified for SPRT. Choosing Py, = PFz‘ and Py; = Pr we
plot the resultant test miss rate versus Py, and Py in figure 2
for the case of the ordered observations. As expected for SPRT,
higher overall miss probability is obtained for higher Pj;. For
the human sequential test, this is not the case since the impact
of the presented samples varies for different choices of Py, .
For instance, for high enough value of }Ale. the ASN is unity.
However, the designer selects the observation by considering
all the observation set. Probabilistically, the error risk is that
of the designer’s selection rather than the observer’s decision.
The design of the information display compensates for the
high risk incurred in the observer’s fast decision. Note that the
accuracy of the values presented in figure 2 is computationally
limited by the number M of the simulations.

In figure 3 we show the variation of the test miss rate

0.05 T T T
-~ —ccay 0.5
0.045 - A = decay 0.8
7 decay 0.9

0.035

s

0.03 -

probability of mis:

0.005

-

0

ASN

Fig. 3. Miss probability versus ASN for non-Bayesian belief update with
different weightings of the log-likelihood terms.

versus the ASN for the human sequential test with ordered
observations for the case of the non-Bayesian belief update
model (21). We use wi = A~', &k > 1, and we show
three curves corresponding to three values of the weight decay
factor A: 0.5, 0.8 and 0.9. As expected, a higher error rate is
recorded per value of ASN for the three curves corresponding
to the Bayesian case shown in figure 1. This is because the
log-likelihood terms are weighted less importantly due to the
primacy effect. Inspecting the curves of figure 1, as weight
wy, approaches the Bayesian weight (unity), the corresponding

miss rate-versus-ASN curve more closely approximates that
for Bayesian belief-updating.

VI. CONCLUSION

In this paper the ordering of the observations is derived
in order to minimize the number of samples required by
an observer to decide on one of two hypotheses with a
minimum probability of error. The phenomenon is modeled
with a sequential test whose thresholds reflect the impact of
the observations on a human besides their distributions in
choosing when to make a decision. The threshold computation
does not burden the observer with a high cognitive load and
is carried out in real time. Compared to a machine sequential
detector, a human subject falls short in terms of abiding by the
specifications. However, by ordering the observations together
with low error targeted by the observer at every stage of the
sequential test, similar performance as that of the machine
sequential detector can be obtained. An extension to the belief-
updating model is presented and simulated. Exploiting the
experience exclusively held by a human should boost man-
machine cooperation for ultimate system performance.
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