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Abstract—In this paper, we consider a multi-coil diffusion MRI
system and compare the achievable performance bounds for two
image reconstruction methods using, respectively, the Matched
Filtering (MF) and the Sum-of-Squares (SoS) techniques. This
performance comparison is related to the parameter estimation
accuracy of the multi-tensor diffusion model expressed in terms of
Cramér-Rao Bounds (CRB). In particular, this analysis allows us
to thoroughly quantify the large gain in favor of the MF approach
and to illustrate the significant acquisition time reduction we can
obtain if we replace the standard SoS technique by the MF-based
one.

Index Terms—Cramér-Rao Bound, matched filter, sum-of-
squares, Nc-Chi distribution, DT model.

I. INTRODUCTION

Diffusion Magnetic Resonance Imaging (dMRI) is an MRI
modality, able to estimate, in-vivo and non invasive manner,
the white matter local direction, by the observation of the mean
displacement of water molecules at each voxel. dMRI has been
used to study brain connectivity by using tractography algo-
rithms (for a review, see [1]), or to diagnose neurodegenerative
diseases like multiple scleroses, Alzheimer, or tumors (for a
review, see [2], [3]). The majority of currently operated clinical
MRI scanners, are equipped with multiple receiver coils, for
the acquisition/transmission of the signal from/to the patient.
Depending on the technique used to combine information from
these coils, the noise properties change in the reconstructed
image. For the standard image reconstruction technique used
in the majority of MRI scanners, namely the sum-of-squares
(SoS), the noise follows a non-central chi distribution [4],
[5]. It is well established that this reconstruction method
is not the SNR-optimal method. The optimal SNR (Signal-
to-Noise Ratio) reconstruction technique is the one based
Matched Filter (MF) [6], [7]. It has been shown in [8] that
it is important to make the appropriate image reconstruction
method from dMRI raw data in order to correctly estimate the
fiber orientations and therefore the correct tractography. This
is due to the fact that the SNR in dMRI is intrinsically low and
the signal attenuation can be close to the noise floor [9]. In this
study, using the Cramér-Rao Bound (CRB) tool, we provide
a thorough comparison between the MF-based and SoS-based
reconstruction techniques and highlight the significant gain we

can obtain in dMRI model parameter estimation when using
the MF approach.

II. DATA MODEL

A. The MR signal model

Currently operated clinical MRI scanners are equipped with
multichannel receiver coils, where each coil, after demodula-
tion and filtering gives two signals treated as the real and
imaginary parts of a complex raw data. Afterwards, the two-
dimensional inverse discrete Fourier transform, of the raw data,
results in L > 1 complex images in the image space, L being
the number of coils. We denote by µ the complex image voxel
intensity in the absence of noise, and by s the measured voxel
intensity. If we assume that no magnetic coupling between the
acquisition coils then, the complex signal intensity measured
in one voxel of the lth coil can be expressed as

sl = µl + nl, (1)

where nl is an additive complex white Gaussian noise process
with zero-mean and variance σ2. Noise terms at different
channels are uncorrelated, i.e. E(nl(t)n

∗
l′(t)) = 0 for l 6= l′.

In arrays of receiver coils, a strong signal intensity is measured
for voxels located close to the coil, and diminishes with
distance, this property is designated by coil sensitivity, which
mean that, the signal given by each coil is weighted by the
coil sensitivity. So, the noise-free signal µl can be seen as an
original image A, a real value representing the desired MR
contrast, weighted by the coil’s sensitivity cl (complex value)
so that (1) becomes:

sl = clA+ nl. (2)

Note that if the main field is not homogeneous and/or the
sample is a moving tissue, the realness assumption of the
original image A will not held. Instead, a complex image A
must be considered. In our work we have assumed that the
image phase is taken into account in the coil sensitivities, this
allows as to take A as a real quantity.
In compact form, the set of measures can be denoted by

s = cA+ n, (3)
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where s = [s1, · · · , sL]ᵀ the complex normal random vector,
c = [c1, · · · , cL]ᵀ complex vector of the sensitivity values, n
additive complex Gaussian noise with covariance Σ = σ2I.

B. Diffusion MRI signal model
In this study, we consider N sets of diffusion gradient ori-

entations {gkj , j ∈ [1, · · · , N ], 1 ≤ k ≤ Kj}, K =
∑N

1 Kj is
hence the total number of gradients used for the acquisition of
the diffusion MRI data, S = [Sᵀ

1 , · · · ,S
ᵀ
N ]ᵀ where Sᵀ

j denotes
a vector of Kj measurements acquired at b-value bj , where bj
is the jth diffusion-weighting coefficient which includes the
main parameters of the diffusion sequence. N is the number
of shells (b-values) [10].

As shown in [11], [12], the signal attenuation related to the
multi-tensor model in the noiseless case is a simple generaliza-
tion of the diffusion tensor (DT) model (for voxels, containing
a mixed diffusion pattern). For simplicity, we restrict our
analysis in this work to the DT and bi-tensor cases only. The
latter is given by

Akj = A0(fe
−bjgᵀkjD1gkj + (1− f)e−bjgᵀkjD2gkj ), (4)

where A0 is the signal intensity without diffusion weighting
(i.e. for bj = 0), gkj = [gx, gy, gz]

ᵀ is a unit vector repre-
senting the coordinates of the kth gradient direction applied
using the b-value bj . f and (1 − f), with f ∈ [0, 1], are the
volume fractions of occupancy of each compartment. D1 and
D2 are 3×3 positive definite symmetric matrices representing
the diffusion tensors.

Di =

d
(i)
1 d

(i)
4 d

(i)
6

d
(i)
4 d

(i)
2 d

(i)
5

d
(i)
6 d

(i)
5 d

(i)
3

 ; i = 1, 2,

Remark. For a single diffusion compartment corresponding
to f = 1 in (4) we obtain the DT model.

III. RECONSTRUCTION METHODS

A. Sum-of-squares
If the k-space is fully sampled, the magnitude image can be

obtained using the root of (SoS), described in [6].

ST =

(
L∑
l=1

|sl|2
)1/2

. (5)

Hence, the intensity ST of any voxel in the reconstructed
image will follow the Nc-Chi distribution [4] with probability
density function (PDF) defined by

P(x, η, L, σ) =
1

σ
η1−2Le−

η2

2 xLe
− x2

2η2 IL−1(x), (6)

where IL−1(.) is the modified (L−1)th order Bessel function
of the first kind, x = ATST

σ2 , ST is the reconstructed image
voxel intensity given by (5), AT is the total image voxel
intensity in the absence of noise, given by

AT =

(
L∑
l=1

|clA|2
)1/2

= CLA. (7)

where CL = ‖c‖2 and η = AT
σ is the SNR.

B. Optimal reconstruction

The method that maximizes the SNR in the resulting image
is the matched filter proposed by Walsh et al in [7]. From (2)
the optimal estimation of A, for the voxel under consideration,
is obtained by [13].

Â = <e

(∑L
l=1 c

∗
l sl∑L

l=1|c|
2
l

)
= A+ <e

(∑L
l=1 c

∗
l nl∑L

l=1|c|
2
l

)
, (8)

where (·)∗ and <e(·) stand for the complex conjugate and real
part, respectively. Based on the MF theory, the signal in (8)
is a sufficient statistic for the desired tensor parameters and
this reconstruction technique maximizes the output SNR. The
reconstructed signal in (8) is real Gaussian distributed with
mean A and variance σ2/(2C2

L).

IV. CRB EXPRESSION

The Cramér-Rao Bound is computed as the inverse of the
Fisher Information Matrix (FIM) given by [14]

Fm,n(Θ) = −E[(∂
2 ln(p(S,Θ))

∂θm∂θn
)],

where E[·] stands for the statistical expectation operator, p(·)
the likelihood function, Θ = [dᵀ

1 ,d
ᵀ
2 , f ]

ᵀ where
di = [d

(i)
1 , . . . , d

(i)
6 ]ᵀ is the six-element vector rearrangement

of Di, i = 1, 2. In the sequel, measured data at different
gradient directions are assumed to be statistically independent
and, for simplicity, the noise power σ2 is a priori known.

A. Case of SoS

In our work in [15], we have established the expression of
the FIM corresponding to

Fm,n =
N∑
j=1

Kj∑
k=1

∂ηkj
∂θm

∂ηkj
∂θn
Mkj , (9)

with

Mkj = E

[
x2kj I

2
L(xkj)

η2kj I
2
L−1(xkj)

]
− η2kj , (10)

and ηkj = CLAkj/σ. Fm,n represents here the (m,n)th entry
of the FIM. In compact form, the latter can be written as

F =
N∑
j=1

Fj ,

where Fj is a symmetric matrix with an upper bloc-triangular
part (denoted FUj ) given by

FUj = C
2
Lη

2
0

b2jGjΥjΥ
2
1jG

ᵀ
j b2jGjΥjΥ1jΥ2jG

ᵀ
j bjGjΥjΥ1jvj

b2jGjΥjΥ
2
2jG

ᵀ
j bjGjΥjΥ2jvj

vᵀ
jΥjvj

 .

(11)

Where η0 = A0

σ is the SNR when there is no diffusion
weighting (b = 0). Gj is a 6 × Kj matrix derived
from the Kj gradient components associated to bj
given by Gj = [g̃1j , · · · , g̃Kjj ]. g̃ is obtained from the
rewriting of the quadratic form gᵀDg as a dot product
between two vectors as follows gᵀDg = g̃ᵀd, i.e.
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g̃ = [g2x, g
2
y, g

2
z , 2gxgy, 2gygz, 2gxgz]

ᵀ. Υj ,Υ1j ,Υ2j are
Kj ×Kj diagonal matrices, given by

Υj = diag(M1j , · · · ,MKjj),
Υ1j = f diag(e−bj g̃

ᵀ
1jd1 , · · · , e−bj g̃

ᵀ
Kjj

d1
),

Υ2j = (1− f) diag(e−bj g̃
ᵀ
1jd2 , · · · , e−bj g̃

ᵀ
Kjj

d2
).

vj = [e−bj g̃
ᵀ
1jd2 − e−bj g̃

ᵀ
1jd1 , · · · , e−bj g̃

ᵀ
Kjj

d2 − e−bj g̃
ᵀ
Kjj

d1
]ᵀ.

In the case of single-shell (i.e. N = 1) diffusion tensor model
(DT), the parameter vector is Θ = d = [d1, . . . , d6]

ᵀ and the
FIM reduces to

F = C2
Lη

2
0b

2GΥΥ̃Gᵀ, (12)

where Υ = diag(M1, · · · ,MK) and
Υ̃ = diag(e−2bg̃

ᵀ
1d, · · · , e−2bg̃

ᵀ
Kd).

B. Case of matched filter

Since the signal in (8) is Gaussian distributed, the (m,n)th

element of the FIM can be calculated using the following
expression [14]

Fm,n =
4C2

L

σ2

N∑
j=1

Kj∑
k=1

∂Akj
∂θm

∂Akj
∂θn

, (13)

which leads to

Fm,n = 4
N∑
j=1

Kj∑
k=1

∂ηkj
∂θm

∂ηkj
∂θn

, (14)

In matrix form, the FIM can be written as F =
∑N
j=1 Fj ,

where the upper triangular part of Fj is equal to:

FUj = 4C
2
Lη

2
0

b2jGjΥ
2
1jG

ᵀ
j b2jGjΥ1jΥ2jG

ᵀ
j bjGjΥ1jvj

b2jGjΥ
2
2jG

ᵀ
j bjGjΥ2jvj

vᵀ
j vj

 . (15)

Similarly to the SoS, the FIM for the single shell diffusion
tensor model (DT), reduces to:

F = 4C2
Lη

2
0b

2GΥ̃Gᵀ, (16)

C. FIM comparison

In [16], a simplified expression of (10) has been derived
according to:

Mkj ≈

(
1 +

1

η̃2kj

)−1
(17)

where η̃kj = Akj/σ. Based on this expression, we can easily
establish the following matrix inequality:

FIMMF ≥ 4

(
1 +

1

maxkj η̃2kj

)
FIMSoS (18)

which means that the model parameter estimation error vari-
ance can be reduced by at least a factor 4 when using the MF
reconstruction method. Interestingly, the gain is the highest
in adverse context where the SNR per coil is relatively low.
For example, if maxkj η̃kj ≤ 1, then the parameter estimation
variance can be reduced by at least a factor 8 when using the

MF. As highlighted in [9], the SNR in dMRI systems is intrin-
sically low and consequently a ’correct’ parameter estimation
requires a large data set and hence a large acquisition time. By
using the MF method, the latter can be reduced significantly
as illustrated next.

Remark: Besides the estimation accuracy gain (detailed next)
in favor of the MF method, we have also a computational
gain when performing the image reconstruction. Indeed, for
each voxel of the reconstructed image, both SoS and ML
require 2L real multiplications and additions. However, the
SoS requires further a square rooting not needed by the MF
(which cost is equivalent to several flops depending on the
computing architecture).

V. SIMULATION RESULTS

In this section, we present numerical experiment results that
compare the estimation error bounds for the two considered
reconstruction methods. For that, we used a parameter of
clinical interest, namely the fractional anisotropy index, used
in medical diagnosis and defined for a given tensor D as:

FA =

√
(λ1 − λ2)2 + (λ1 − λ3)2 + (λ2 − λ3)2

2((λ1)2 + (λ2)2 + (λ3)2)
,

where λ1, λ2 and λ3 are the eigenvalues of D. Using the previ-
ously presented CRBs, we computed the CRB(FA) according
to the formula given in [15]. We consider the relative error
measure of the fractional anisotropy of the first tensor (FA1)
where its CRB is computed as in [15]

eFA =
STD(FA)

min

FA
× 100,

STD(FA)
min is the minimum standard deviation in the estimation

of FA obtained from its CRB.
We simulated two orthogonally crossing fiber bundles, the dif-
fusion tensor diffusivities of both fibers assumed to be identical
and equal to [λ1, λ2, λ3] = [1708, 303, 114]× 10−6mm2.s−1

and the SNR = A0

σ is set equal 30 for high SNR and equal 2
for low SNR. The volume fractions of the two fiber bundles
are assumed to be equal (f = 0.5) and that all the coils have
equal sensitivity cl = 1, i.e. C2

L = L.

A. Effect of the number of gradients

Fig. 1-(a) reports FA1 relative error measure when using MF
and SoS reconstruction methods versus the number of diffu-
sion gradients. We have used the sampling scheme of the dif-
fusion encoding gradient directions given in [10]. By varying
the total number of diffusion gradients K from 20 to 500, dis-
tributed on two shells, taken (b1, b2) = (1000, 3000) s.mm−2

and the number of acquisition coils held fix to L = 8, we
observe that the MF method significantly outperforms the SoS
method. For example, to estimate FA with relative error equal
to 1% we need 350 diffusion gradients for the SoS method,
but only 65 for the MF method, which represents a reduction
in the scan time by a factor ≈ 5.5.
Fig. 1-(b) shows that for low SNR, the MF is the appropriate
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Fig. 1. FA1 Relative errors vs. the number of diffusion gradients for the
two reconstruction methods, L = 8, (b1, b2) = (1000, 3000) s.mm−2 (a)
SNR=30, (b) SNR=2
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Fig. 2. FA Relative errors vs the SNR (η0 = A0
σ

). (b1, b2) =
(1000, 3000) s.mm−2, (K1,K2) = (13, 52), L = 8. (a) Crossing
angle=90◦, (b) Crossing angle=20◦.
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Fig. 3. FA Relative errors vs the number of acquisition coils. (b1, b2) =
(1000, 3000) s.mm−2, (K1,K2) = (13, 52) (a) SNR=30, (b) SNR=2

method for a proper estimation of the tensor model parameters.
For example, when using 65 diffusion gradients we obtain
eFA1 = 60% for the SoS method and eFA1 = 16% for the MF
method.

B. Effect of the SNR

Since the SNR of the dMRI data cannot be set by the user,
(it depends on several parameters: b-value, the direction of the
diffusion gradient, the medium diffusivities ... ), in Fig. 2 we
plot the relative error in the estimation of FA of the first tensor
as a function of the intrinsic SNR (η0) (i.e. without diffusion
weighting) for both SoS and MF methods taken (b1, b2) =
(1000, 3000) s.mm−2, L = 8 and the number of diffusion
gradients is fixed to K = 65 distributed on two shells as
(K1,K2) = (13, 52). Fig. 2-(b) shows similar results but for

two fibers with a crossing angle equal to 20◦. We can see that
for high SNR eFA1(SoS) ≈ 2eFA1(MF ) and for low SNR
eFA1(SoS) > 2eFA1(MF ). In particular, the performance gain
related to the MF method is the highest at low SNR and small
crossing angle.

C. Effect of the number of coils

From (11) and (15), we can show that for a multi-coil
system the estimation error standard deviation decreases ap-
proximately

√
L times faster as compared to a single-coil

system. In this simulation we compare between the two re-
construction methods when varying the number of coils, taken
(b1, b2) = (1000, 3000) s.mm−2, and K = 65 distributed on
two shells as (K1,K2) = (13, 52). From Fig. 3-(a) and Fig. 3-
(b), we observe that the MF method allows us to obtain the
same performance as SoS method with significantly a reduced
number of coils.

D. Effect of b-value

In dMRI, a high b-value is obtained by increasing the
gradient magnitude and duration and by widening the interval
between gradient pulses, results in an increase of the noise
level and scan time. In clinical routine it is preferable to work
with moderate b-values and the MF reconstruction method
allows us to achieve this goal. Fig. 4 shows that, as compared
to SoS method, we can reduce b2 value by using MF method
without affecting the estimation quality. For example, we
obtain eFA1

= 2% when using b2 = 2800s.mm−2 for the
SoS method and b2 = 1800s.mm−2 for the MF method. As
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Fig. 4. We plot FA1 Relative errors w.r.t b2 value while b1 = 1000s.mm−2,
K = 65, L = 8, (K1,K2) = (13, 52), crossing angle=90◦. (a) SNR=30,
(b) SNR=2
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Fig. 5. we plot FA1 Relative errors w.r.t b2 value while b1 = 1000s.mm−2,
K = 65, L = 8, crossing angle=20◦. (a) SNR=30, (b) SNR=2
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explained previously, this will result in a non negligible reduc-
tion of the scan time. In Fig. 5, the estimation performance
is investigated for a small crossing angle (equal to 20◦), we
keep b1 = 1000 and we vary b2 in the range [1100, 3000] for
high and low SNR. We can see that the best performance are
obtained when using MF method especially in the low SNR
case.

VI. CONCLUSION

In this work, we have provided a thorough comparison
between the achievable performance of the MF and SoS
methods when used for dMRI image reconstruction. We have
derived the CRB expressions for both cases and exploited them
to show that the MF-based parameter estimation variance is ap-
proximately 4 times smaller than that of the SoS-based method
at high SNR. In the low SNR scenarios, which often occur for
dMRI measurements as shown in [9], the performance gain
is even higher. This translates, practically, in significant data
acquisition time reduction. Indeed, the simulation examples
given in the end of the paper, highlight the large acquisition
time saving for a preserved estimation quality which is one of
the crucial issues for MRI and dMRI systems.
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