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Abstract—This paper addresses the conversion problem of
High Dynamic Range (HDR) images into Low Dynamic Range
(LDR) images. In this objective, separable non-linear mul-
tiresolution approaches are exploited as Image Tone Map-
ping Operators (TMOs). They are related on: (i) Essentially
Non-Oscillatory (ENO) interpolation strategy developed by
Harten namely Point-Value (PV) multiresolution family and
Cell-Average (CA) multiresolution family; and (ii) Power-P
multiresolution family introduced by Amat. These approaches
have the advantage to take into account the singularities, such
as edge points of the image, in the mathematical model thus
preserving the structural information of the HDR images.
Moreover the Gibbs phenomenon, harmful in tone mapped
images, is avoided. The quality assessment of the tone mapped
images is measured according to the TMQI metric. Simulation
results show that the proposed TMOs provide good results
compared to traditional TMO strategies.

Index Terms—High dynamic range, Tone mapping, Essen-
tially non-oscillatory interpolation, Non-linear multiresolution,
Point-value and cell-average multiresolution, Power-P multires-
olution.

1. Introduction

The Human Visual System (HVS) is able to perceive
real-word scenes with a wide range of colors and intensities.
To be faithful to the HVS, the real-world scene acquisition
consists in capturing multiple Low Dynamic Range (LDR)
images with different levels of exposure of the scene. These
images are then merged building an image as faithful as
the real-world scene where its very dark and bright areas
are rendered at the same time. Such images, with excellent
visual quality, are known as High Dynamic Range (HDR)
images avoiding under and over exposure areas that can
be perceived on LDR images. However these HDR images
cannot be visualized on standard LDR display devices since
their dynamic range is smaller than that of HDR images.
Moreover HDR display devices currently remain too ex-
pensive. Therefore many image Tone Mapping Operators
(TMOs) have been proposed [1]. Their main concerns is to
reduce the dynamic range (contrast, color gamut, details...)
of HDR images to the dynamic range of LDR display device

while preserving the appearance of the captured scene in
terms of contrast and the overall impression of brightness
and colors.

Since these recent years a huge number of research
studies on image TMO topic have been developed. Although
each TMO approach has its own underlying strategy, it is
not possible to review all the developed work in this paper.
However a state of the art is fairly complete in reference
[1] where a TMO classification into local operators, global
operators, segmentation operators, frequency operators and
perceptual operators is proposed.

In what follows, we briefly present only some selected
TMOs that will be used to evaluate the performance of
our approach. In [2], Durand and Dorsey proposed a TMO
reducing the HDR contrast while preserving the image
details. This work uses an edge-preserving bilateral filter
to decompose the HDR image into two layers: a base layer
encoding large-scale variations and a detail one. Contrast
is then reduced only in the first layer while the details
are kept unchanged. The combination of these TM layers
produce the LDR image. The TMO is performed on the
logarithmic domain, considering that the difference between
the logarithmic pixel intensities can refer to a contrast mea-
sure. In [3], Drago et al. presented an adaptive logarithmic
mapping method of luminance values. It concerns the adap-
tive adjustment of the logarithmic basis depending on the
radiance of the pixels. A set of logarithmic functions ranging
from log 2 to log 10 were used to preserve scene details and
to improve the rendering contrast. A bias power function
was used to ensure a smooth interpolation between the
different logarithm bases. In [6], Li et al. proposed a subband
architecture related on an oversampled Haar pyramid repre-
sentation. Subband coefficients are re-scaled using a gain
control function reducing the high frequency magnitudes
and boosting low ones. The modified subbands are then
convolved with the Haar synthesis filters and summed to
reconstruct the final LDR image. In [7], Duan et al. proposed
an optimization approach based on a histogram adjustment
between linear mapping and equalized histogram mapping.
In [8], Fattal et al. proposed a second generation of wavelets
based on the edge content of the image avoiding having
pixels from both sides of an edge. This approach was then
exploited to map an HDR image into an LDR image.

This paper evaluates the performance of TMOs related
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on non-linear separable multiresolution families using data
dependent interpolation. Note that the strong point of these
multiresolutions is that they have the ability to consider in
their mathematical models the image singularity points. To
our knowledge these families have not yet been exploited to
map HDR images in LDR images. This paper is organized
as follows. Section 2 introduces the basic concepts on the
non-linear multiresolution families using dependent data
interpolation. A set of operators are then derived. Section 3
evaluates the performance of the derived TMOs. This work
is concluded in section 4.

2. Proposed Tone Mapping Operators based on
data dependent interpolation

The proposed Image Tone Mapping Operators (TMOs)
rely on separable non-linear multiresolution approaches
based on data dependent interpolation. The first class ex-
ploits the Essentially Non-Oscillatory (ENO) interpolation
strategy developed by Harten [9], [10], [11], [12] where
Point-Value (PV) mutiresolution family and Cell-Averarage
(CA) multiresolution family are considered. The second
class concerns the Power-P mutiresolution introduced by
Amat [13]. These families have the ability to introduce
in their mathematical model the isolated singularities such
as edge points in the image thus avoiding the Gibbs phe-
nomenon particularly harmful in tone mapped images.

Before presenting the TMOs, this section introduces the
basic concepts of Harten multiresolution. The Point Value
(PV), Cell-Average (CA) and Power-P approaches are then
derived.

2.1. One-dimensional non-linear Harten multireso-
lution

This section briefly reviews the non-linear discrete mul-
tiresolution strategy developed by Harten. Consider a one-
dimensional discrete data set vj = (vjk)k=1,..,Nj

defined on
the grid Γj := (2−jk)k=1,..,Nj

at resolution level j.
At j − 1 coarser level, the projection operator, denoted

Dj−1
j , computes the data set vj−1 = (vj−1k )k=1,..,Nj−1

(with
(Nj−1 < Nj)). The prediction operator, denoted P jj−1,
approximates the data set v̂j = (v̂jk)k=1,..,Nj

from vj−1. In
Harten framework, the projection operator is considered as a
non-linear operator. The prediction and projection operators
satisfy the following consistency condition:

Dj−1
j P jj−1 = INj−1

, (1)

where INj−1 is the identity operator.
The null space of Dj−1

j represents the detail space of
dimension Nj − Nj−1. The prediction error ej = vj − v̂j
belongs to the detail space and then expanding it on a basis
of that space getting the detail vector (dj−1k )k=1,..,Nj−Nj−1 .

Therefore, one can equivalently write vj in the form
(vj−1, dj−1). Iterating this process, one obtains a multiscale
representation of vJ into (v0, d0, d1, ..., dJ−1).

To adapt the prediction near the singularities of the
data, Harten proposed to use ENO interpolation techniques.
At resolution level j, the predicted values (v̂j2k+1)k=1,..,Nj

are approximated by using the values vj−1k from prediction
stencil of length 2M defined as:

S(k, r) := {(k+1−r−M)2j−1, ..., (k−r+M)2j−1}, (2)

where r is an integer in [−M + 1,M −1], corresponding to
the position of the stencil with respect to k. A polynomial
pk,r of degree 2M − 1 is defined to interpolate the value of
v on the S(k, r). Amongst the set of polynomial pk,r with
r in [−M + 1,M − 1], Harten proposed to choose the least
oscillatory. To measure the degree of oscillations of such
polynomial pk,r, the following function is used:

Cj−1(S(k, r)) =
∑
l∈Sk,r

|∆vj−1l |, (3)

where ∆vl = vl+1 − vl.
Therefore the optimal value of r is the solution of the

following minimization problem:

r∗ = argmin−M+1≤r≤M−1C
j−1(S(k, r)). (4)

2.2. ENO multiresolution family

This section derives 1D ENO predictor operators that
will be exploited by our image tone mapping operators.

2.2.1. ENO point-value multiresolution family. In this
family, denoted ENO-PV, the discrete vector vj := (vjk)k∈Z
is considered as the point values of the continuous function
v on the grid Γj := (2−jk)k∈Z, i.e. vjk = v(2−jk). The
operator Dj−1

j is considered as the well known downsam-
pling operator i.e. vj−1k = vj2k. The predictor operator is
then defined as data dependent interpolation operator.

By using the values in v(λ)λ∈S(k,r), the predicted values
are then given by:

v̂j2k+1,r = pk,r∗((2k + 1)2−j), (5)

where the parameter r∗ is associated to the polynomial that
introduces the least oscillatory around the neighborhood of
k according to the cost function given by equation (4).

Now follow the development in [14] and [15]. The
prediction values, v̂j2k+1,r for r = −1, 0, 1, are provided for
the cubic Lagrange polynomial corresponding to M = 2:
v̂j2k+1,−1 = 1

16v
j−1
k−2 −

5
16v

j−1
k−1 + 15

16v
j−1
k + 5

16v
j−1
k+1

v̂j2k+1,0 = − 1
16v

j−1
k−1 + 9

16v
j−1
k + 9

16v
j−1
k+1 −

1
16v

j−1
k+2

v̂j2k+1,1 = 5
16v

j−1
k + 15

16v
j−1
k+1 −

5
16v

j−1
k+2 + 1

16v
j−1
k+3

(6)
Note that the prediction v̂j2k+1,0 corresponds to Dubuc-
Deslauries interpolatory wavelet.
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2.2.2. ENO cell-average multiresolution family. In this
family, denoted ENO-CA, the discrete vector vj := (vjk)k∈Z
is considered as the average values of a piecewise continu-
ous function v on the grid Γkj = {[2−jk, 2−j(k+1)], k ∈ Z}.
The grid here is defined by using the dyadic intervals of the
form Ijk = [2−jk, 2−j(k+ 1)]. The operator Dj−1

j becomes
in this context the averaging operator:

vj−1k =
1

2
(vj2k + vj2k+1). (7)

As in the PV case, the stencil S(k, r) of intervals is given
by :

S(k, r) := {Ij−1k+1−r−M , ..., I
j−1
k−r−1+M}. (8)

The length of the stencil is 2M − 1. A polynomial pk,r of
degree 2M − 2 is defined to interpolate the average values
on S(k, r). Following the same ENO strategy defined in
the PV case, amongst the set of polynomial pk,r with r =
[−M + 1,M − 1], pk,r∗ is selected as the least oscillatory
polynomial corresponding to r∗ deduced from equation (4).
The predicted values are then deduced from:

v̂j2k,r =

∫
Ij2k

pk,r∗(t)dt and v̂j2k+1,r =

∫
Ij2k+1

pk,r∗(t)dt.

(9)
Now follow the development in [14] and [15]. A two

order accurate prediction Lagrange interpolation polynomial
is used (M = 2). Note that from equation (7), only one
of the values v̂j2k,r or v̂j2k+1,r needs to be computed. The
predicted average values, v̂j2k+1,r for r = −1, 0, 1, are then
given by:

v̂j2k+1,−1 = − 1
8v
j−1
k−2 + 1

2v
j−1
k−1 + 5

8v
j−1
k

v̂j2k+1,0 = 1
8v
j−1
k−1 + vj−1k − 1

8v
j−1
k+1

v̂j2k+1,1 = 11
8 v

j−1
k − 1

2v
j−1
k+1 + 1

8v
j−1
k+2

(10)

Note that the prediction v̂j2k+1,0 corresponds to the up-
sampling filter in the biorthogonal wavelet transform (3, 2).
The biorthogonal scaling function is the box function, i.e.
the characteristic function of the interval [0, 1].

2.3. Power-P data dependent multiresolution fam-
ily

In order to emulate the ENO idea in PV context, Amat
proposed in [13] to use the Piecewise Polynomial Harmonic
(PPH) prediction operator. The PPH operator belongs to
a large class of prediction operators, called the Power-P
prediction operator. This operator naturally appears as a
perturbation of the linear two-point interpolation scheme,
since it is defined by:

v̂j2k+1 =
vj−1k + vj−1k+1

2
− 1

8
P
(

∆2vj−1k+1,∆
2vj−1k

)
, (11)

with P(x, y) = sgn(x)+sgn(y)
2

x+y
2

(
1 −

∣∣∣x−yx+y

∣∣∣p ), p ≥ 1.
Note that it coincides for p = 2 with the harmonic mean
and therefore the Power-2 scheme coincides with the PPH
scheme. Note also that this prediction is as least first order
accurate.

2.4. Tone Mapping Operator using data dependent
interpolation

This section presents the proposed approach that maps
HDR images to LDR images. The selected operator is
based on the extension of the 1D non-linear multiresolution
families, described in the previous sections, using classical
tensor product approach.

Assume that the HDR image is of size N ×M pixels.
Denote T the TMO corresponding to ENO-PV, ENO-CA,
PPH or Power-P. It is performed on the logarithmic transfor-
mation of the Luma values Lw of the HDR image. Indeed
the goal of the logarithm transformation is to take into
accounts all the small variations in the scene. Among the
various possible logarithmic transformations, the following
function is selected:

D = logb(Lw + ε), (12)

where b is the logarithmic basis. ε is a positive value added
to keep away from cases of logarithmic singularities. The
transformed Luma is then decomposed according to the
iterated scheme provided by Fig.1. Prediction values are
deduced according to one of equations (6), (10) or (11).
The process is applied first on the lines and then on the
columns of the image.

At a resolution level J , a set of approximation coef-
ficients v0 and detail coefficients {d0, d1, d2, ..., dJ−1} are
obtained. These coefficients are scaled as follows: β × v0
with 0 ≤ β ≤ 1; and γ × {d0, d1, d2, ..., dJ−1} with
0 ≤ γ ≤ 1.

Figure 1. Forward and backward steps at a given level j.

3. Simulation results

This section compares the quality of the tone mapped
images using the mutiresolution families described in the
previous sections. The tone-mapped image quality is mea-
sured with the TMQI (Tone-Mapped image Quality Index)
metric developed in [16]. This metric evaluates the LDR im-
age using the original HDR image. Note that TMQI measure
is upper-bounded by 1. Simulations have been conducted
under Matlab environnement using the HDR Toolbox [1]
with its test HDR images ”Bottle Small”, ”Office”, ”Oxford
Church” and ”Atrium Night”. The different parameters are
chosen so as to give the best results in terms of TMQI metric
in all methods.
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Four TMO operators namely ENO-PV, ENO-CA, PPH
(Power-2) and Power-P (with P = 4) are used with the
following parameters β = 0.3, γ = 0.7, J=2, upd=0, b = e.
They are compared to :
- Fattal [8] using WCDF and RBW methods with the follow-
ing parameters α = 0.8, β = 0.3, γ = 0.8, J=2, upd=0;
- Drago [3], Reinhard [4], Ward [5], Durand [2] with the default
parameters as given in the HDR Toolbox and Duan [7] using
β = 0.3.

Table 1 provides the tone mapped images TMQI accord-
ing to these different methods. The performance of the non-
linear multiresolution families is competitive to Fattal [8].
Also note that our solutions are less costly in terms of
computations than WCDF requiring the computation and the
storage of weight coefficients for the reconstruction step.

The tone mapped HDR ”Bottle Small” using RBW,
WCDF, ENO-CA, ENO-PV, Power-4, PPH operators is
respectively given by Fig.2, Fig.3, Fig.4, Fig.5, Fig.6 and
Fig.7. These images have a similar visual quality.

Although TMQI of ENO-PV (0.89) is slightly lower than
Fattal (0.94) for ”Atrium Night” HDR image, some visual
details are best rendered by our solution. The luminance
of ”Atrium Night” HDR tone mapped image is represented
on Fig. 8a where the red rectangle frames a specific area.
This area is shown in Fig. 8b, Fig. 8c, Fig. 8d, Fig. 8e,
Fig. 8f, Fig. 8g as close-ups of the six tone mapped images
using RBW, WCDF, ENO-CA, ENO-PV, PPH, Power-4. It
can be seen that the horizontal edge of the staircase step
is better rendered with non-linear multiresolution families
using dependent data interpolation. We can observe that
horizontal and vertical edges of all tone mapped images
are well rendered. This is related to the separability of the
approach. In our future work, we will investigate the non-
separable approach as suggested in [14] and [15] to further
improve the LDR image rendering.

TABLE 1. TONE MAPPED IMAGE QUALITY INDEX (TMQI)

TM Bottle Small Oxford Atrium
methods Small Office Church Night
Drago [3] 0.801 0.801 0.814 0.799
Reinhard [4] 0.807 0.826 0.789 0.801
Ward [5] 0.783 0.775 0.817 0.797
Durand [2] 0.892 0.825 0.814 0.929
Duan [7] 0.915 0.955 0.986 0.964
Fattal WCDF [8] 0.969 0.920 0.914 0.941
Fattal RBW [8] 0.972 0.920 0.916 0.944
ENO-CA 0.968 0.889 0.930 0.945
ENO-PV 0.960 0.875 0.917 0.891
PPH 0.964 0.873 0.916 0.921
Power-4 0.967 0.871 0.918 0.917

4. Conclusion

This paper evaluated the performance of the image tone
mapping operators derived from the separable non-linear
multiresolution families. These families, based on data de-
pendent interpolation, include in their mathematical model

Figure 2. Fattal’s RBW (α = 0.8, β = 0.3, γ = 0.8, J=2, upd=0).

Figure 3. Fattal’s WCDF (α = 0.8, β = 0.3, γ = 0.8, J=2, upd=0).

Figure 4. ENO-CA (β = 0.3, γ = 0.7, J=2, upd=0, b = e).

the singularity points of the HDR image. The Gibbs phe-
nomenon that affects the visual quality of the tone mapped
image is then reduced. Moreover vertical and horizontal
edges are well rendered. Simulations results are competitive
to the image tone mapping operators available in the state
of the art. To further improve the LDR image rendering we
plan to investigate the non-separable approach as suggested
in [14] and [15].
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Figure 5. ENO-PV (β = 0.3, γ = 0.7, J=2, upd=0, b = e).

Figure 6. PPH (β = 0.3, γ = 0.7, J=2, upd=0, b = e).

Figure 7. Power-4 (β = 0.3, γ = 0.7, J=2, upd=0, b = e).
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