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Abstract—This paper presents an algorithm for signal subspace
separation in the context of multidimensional data. The proposal
is an extension of the randomized Singular Value Decomposition
(SVD) for higher-order tensors. From a set derived from random
sampling, we construct an orthogonal basis associated with the
range of each mode-space of the input data tensor. Multilin-
ear projection of the input data onto each mode-space then
transforms the data to a low-dimensional representation. Finally,
we compute the Higher-Order Singular Value Decomposition
(HOSVD) of the reduced tensor. Furthermore, we propose an
algorithm for computing the randomized HOSVD based on the
row-extraction technique. The results reveal a relevant improve-
ment from the standpoint of computational complexity.

Index Terms—higher-order singular value decomposition, ran-
domized algorithm, signal subspace method, tensor decomposi-
tion, dimension reduction, row-extraction technique.

I. INTRODUCTION

M atrix factorizations decompose a matrix into two or
more matrix factors. In general, the decompositions can

be used to store (or to process) all data in an inexpensive
way regarding memory and computational cost, as well as to
discover certain latent features underlying the data and also
when part of it is missing or inaccurate.

Generally speaking, decompositions are distinguished by
additional constraints on the factors and a particular fac-
torization could be more appropriate depending upon the
problem to be solved. The best computational method for
computing factorizations depends on several factors, such as
matrix properties, availability of memory, acceptable accuracy,
and robustness. In many applications, one looks for an approx-
imation to the input data in fewer degrees of freedom to reduce
the resulting computational complexity.

Randomized sampling techniques can be used to construct a
low-rank approximation to a given matrix [1]–[4]. In general,
these methods construct a low-dimensional subspace that
approximates the range of the matrix and then computes a
factorization of the reduced matrix via variations of classical
deterministic methods.

Halko et al. [4] propose a dimensionality-reduction tech-
nique based on a randomized low-rank factorization. The idea
is to sample randomly the matrix aiming at identifying a
subspace that approximates the range of an input data in which
most of the information is captured. In the sequence, the matrix
is projected to the approximate range before computing the
Singular Value Decomposition (SVD) of the reduced matrix.
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romano@decom.fee.unicamp.br.

An attractive advantage of their algorithm is the robustness
and accuracy attained with a low computational complexity
cost. For an m×n input matrix with k dominant components of
the SVD, their method requires O

(
mn log(k) + (m+ n)k2

)
floating-point operations (flops) in contrast with O(mnk) for
classical algorithms. The asymptotic algorithmic complexity
reduction is achieved by employing a structured random matrix
to provide an orthogonal basis for the range of the input matrix
and by computing the SVD via row-extraction technique [4].

The use of a matrix approach for applications in which data
structure representation naturally fits more than two domains
could be inappropriate, especially when the computational load
is affected by multiple iterations. Furthermore, the inherent
conditions of the classical bidimensional analysis are more
restrictive than those of the multidimensional analysis [5], [6].

A multilinear generalization of the SVD called the Higher-
Order Singular Value Decomposition (HOSVD) was intro-
duced by Lathauwer [7]. Although this decomposition is a
particular case of the Tucker model [8], the HOSVD is
analogously defined as the matrix SVD, regarding singular
vectors and values, and has some properties similar to those
of the standard SVD [7], [9].

For the matrix approach, the SVD is a factorization of the
form X = USVH, where S is a pseudo-diagonal matrix. In
the higher-order case, the core matrix S is replaced by the
core tensor S, which is in general a full tensor with a weaker
condition than being pseudo-diagonal (i.e. si1,i2,...,iN 6= 0 only
if i1= i2= . . .= iN ). As a consequence, the HOSVD does not
allow the direct interpretation of tensor rank concerning the
minimum number of rank-one tensors sufficient to decompose
a tensor. Analogously to the matrix approach, the HOSVD can
be applied to decompose input data into orthogonal subspaces,
as firstly proposed in [10].

Although the usual definition of tensor rank [11] is a
generalization of the definition of matrix rank, determining
the tensor rank is not easy and can only be achieved in some
special cases [12]–[14]. The problem of determining the best
approximation of the rank of a given higher-order tensor has
been extensively investigated [9], [15]–[19], being useful as
a tool for dimensionality reduction, data compression, and
signal subspace estimation. A good rank approximation can be
obtained by restricting the rank of matrix unfoldings, called the
multilinear rank of a tensor. Nonetheless, this approach leads
to a suboptimal solution in general, contrarily to the matrix
case [9], [15].

The present article is motivated by applications involving
high-dimensional data and proposes a method for computing
a lower dimensionality representation of the input data tensor
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as a pre-processing step to estimate the signal subspace. It
also leads to an improvement of the computation complexity.
In fact, our method can be viewed as an extension of the
randomized SVD to higher-order tensors. Based on the row-
extraction technique employed in [4] for computing the SVD
at lower computational cost, we also propose an extension of
this method for computing the randomized HOSVD.

In this sense, the focus is not to determine the best approxi-
mation of a given multilinear rank to X , neither to investigate
a new technique for truncating the HOSVD, since there are
several alternative strategies for truncating the HOSVD as
higher-order orthogonal iteration (HOOI) [15], sequentially
truncated HOSVD (ST-HOSVD) [19], and optimization-based
on the trust-region and on the conjugate gradients methods
[16], [18].

The paper is organized as follows. First, we provide a brief
overview of some basic definitions and also an introduction
to HOSVD, which will be useful throughout this paper. In
Section III, we present the randomized method for higher-
order subspace separation. A performance analysis of the
proposed methods is carried out in Section IV. Finally, Section
V draws some conclusions and perspectives for future works.

II. DEFINITIONS

In this paper, N -th order tensors (for N ≥ 3), matri-
ces (second-order tensors), vectors (first-order tensors), and
scalars (zero-order tensors) are denoted by calligraphic letters
(A,B, . . . ), boldface upper-case (A,B, . . . ), boldface lower-
case (a,b, . . . ), and lower-case (a, b, . . . ), respectively. AT,
AH, and A∗ stand for transpose, Hermitian transpose, and
complex conjugate of A, respectively. The selection vector
êl

∆
= [ 0 · · · 0 1 0 · · · 0 ]T ∈ RL, l ∈ {1, . . . , L}, is defined as

an unit vector with 1 in the l-th row and zeros elsewhere. The
Kronecker and Khatri-Rao products are denoted by ⊗ and �
respectively.

Definition 1. The n-mode product of a tensor A ∈
CI1×···×In×···×IN and a matrix U ∈ CJn×In is an (I1 ×
· · · × In−1 × Jn × In+1 × · · · × IN )-tensor given by

[A×n U]i1,...,in−1,jn,in+1,...,iN

∆
=

In∑
in=1

ai1,...,in,...,iNujn,in ,

for all index values.

Definition 2. The n-mode product of a tensor A ∈
CI1×···×In×···×IN and a vector u ∈ CIn is an
(I1 × · · · × In−1 × In+1 × · · · × IN )-tensor given by

[A×n u]i1,...,in−1,in+1,...,iN

∆
=

In∑
in=1

ai1,...,in,...,iNuin , for all

index values.

Definition 3. (Tensor rank). Any N -th order tensor X ∈
CI1×I2×···×IN can be written as a sum of R rank-one tensors,
i.e.

X =
R∑
r=1

λr a(1)
r ◦ a(2)

r ◦ · · · ◦ a(N)
r , (1)

where R
∆
= rank (X ) is the minimum number that satisfies (1).

The decomposition of a tensor X in the form of (1) is
referred to as the Canonical Decomposition (CANDECOMP)

[20] or Parallel Factors (PARAFAC) [21] model. This defini-
tion is a generalization of a minimum sum of rank one matrices
to higher-order tensors.

The Higher-Order Singular Value Decomposition (HOSVD)
of an N -th order tensor decomposes multilinear data into N
orthogonal bases, each associated with a mode (or dimension)
of the tensor. Calculating the HOSVD consists of the compu-
tation of N SVDs of different matrices constructed from the
elements of the N -th order tensor (or matrix unfoldings).

The HOSVD of an N -th order tensor X ∈ CI1×I2×···×IN
will be written as the product

X = S ×1 U(1) ×2 U(2) · · · ×N U(N). (2)

III. A NEW STRATEGY FOR HOSVD
In this section, we derive two different methods for per-

forming HOSVD by employing the randomized SVD [4].
By definition, the matrix unfoldings of an N -th order tensor,

X(n) for n ∈ {1, .., N}, are, in general, rectangular matrices
with size (In × I1 . . . In−1In+1 . . . IN ) for n ∈ {1, . . . , N},
since In tends to be smaller than I1 . . . In−1In+1 . . . IN for
any n.

According to the randomized SVD procedure [4], a ran-
domized matrix W(n) ∈ CIn×Kn can be employed to obtain
a series of vectors that span the range of the unfolded matrix
X(n). Then, we can use the QR decomposition of these vectors
to obtain an orthonormal basis Q(n) for the range of X(n), i.e.,

Y(n) = X(n)T

W(n)

= Q(n)R(n) ∈ CI1...In−1In+1...IN×Kn+p, (3)

where p denotes an oversampling parameter, typically set to
5-10 [4]. This parameter is used to ensure that the columns of
Y(n) actually cover the entire range of each matrix unfolding.

In the second stage of the randomized SVD, we compute
the SVD on the reduced matrix B(n) ∈ CIn×Kn+p given by

B(n) = X(n)Q(n). (4)

Note that B(n) is much smaller than X(n), so this decompo-
sition can be obtained with low complexity.

Given the SVD of B(n), i.e., B(n) = U(n)Σ(n)V(n)H

, and
the approximation X(n)Q(n)Q(n)H ≈ X(n), the SVD of each
matrix unfolding X(n) can be directly computed as follows

X(n) = U(n)Σ(n)Ṽ(n)H

, (5)

with Ṽ(n) ∆
= Q(n)V(n) ∈ CI1...In−1In+1...IN×Kn+p.

A. Generalization of the randomized SVD to higher-order
tensors

The main feature of the randomized SVD is that it trans-
forms a matrix X(n) into a smaller matrix B(n), and then
computes the simpler SVD of B(n). The transformation is
carried out using an orthonormal basis of the range space of
X(n), so that obtaining the SVD of X(n) from the SVD of
B(n) is straightforward. In this section, we extend this idea to
a higher-order tensor X .

For the sake of simplicity, we restrict the analysis to the
simplest case of higher-order tensors, i.e. for N = 3. Let the
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random vectors {w(n)
1 , . . . ,w

(n)
Kn
} associated with each n-th

mode form a linearly independent set, such that

y
(1)
k = X ×2 w

(2)
k ×3 w

(3)
k ∈ CI1 ,

y
(2)
k = X ×1 w

(1)
k ×3 w

(3)
k ∈ CI2 ,

y
(3)
k = X ×1 w

(1)
k ×2 w

(2)
k ∈ CI3 , (6)

for k ∈ {1, . . . ,Kn} and n ∈ {1, 2, 3}. Each expression in (6)
is as a linear mapping from CI1×I2×I3 to CI1 , CI2 , and CI3 ,
respectively.

From (1), one can show that

y
(1)
k =

R∑
r=1

γ
(1)
r,k a(1)

r , γ
(1)
r,k

∆
= λr

(
a(2)T

r w
(2)
k

)(
a(3)T

r w
(3)
k

)
,

y
(2)
k =

R∑
r=1

γ
(2)
r,k a(2)

r , γ
(2)
r,k

∆
= λr

(
a(1)T

r w
(1)
k

)(
a(3)T

r w
(3)
k

)
,

y
(3)
k =

R∑
r=1

γ
(3)
r,k a(3)

r , γ
(3)
r,k

∆
= λr

(
a(1)T

r w
(1)
k

)(
a(2)T

r w
(2)
k

)
.

(7)

For a tensor of N dimensions, (6) and (7) can be written as

y
(n)
k = X ×1 w

(1)
k · · · ×n−1 w

(n−1)
k ×n+1 w

(n+1)
k · · · ×N w

(N)
k

=

R∑
r=1

γ
(n)
r,k a(n)

r ∈ CIn , (8)

with

γ
(n)
r,k

∆
= λr

N∏
m=1
m6=n

(
a(m)T

r w
(m)
k

)
, (9)

k ∈ {1, . . . ,Kn}, and n ∈ {1, . . . , N}, for an N -th order
tensor X .

Taking into account the vectors given in (8), for each mode
n, we can construct a sample matrices with Kn column vectors
{y(n)

1 , . . . ,y
(n)
Kn
} as

Y(n) ∆
=
[

y
(n)
1 . . . y

(n)
Kn

]
∈ CIn×Kn , (10)

where Kn is the rank of X(n). It is possible to show that

Y(n) = X(n)Ω(n), (11)

with

Ω(n) ∆
=

N�
m=1
m6=n

W(m,n) ∈ CI1...In−1In+1...IN×Kn ,

W(m,n) ∆
=
[

w
(m)
1 . . . w

(m)
Kn

]
∈ CIm×Kn . (12)

An orthonormal basis Q(n) ∈ CIn×Kn for the range of each
n-th mode vector space of X can be computed from the QR
factorization of each Y(n), which yields

Y(n) = Q(n)R(n), (13)

for n = {1, . . . , N}.
From N orthonormal bases {Q(1), . . . ,Q(N)}, and since

Kn ≤ In, a reduced tensor B ∈ CK1×K2×···×KN can be
computed by the following product

B = X ×1 Q(1)H

×2 Q(2)H

· · · ×N Q(N)H

. (14)

Since X(n)≈Q(n)Q(n)H

X(n), then

X ≈ B ×1 Q(1) ×2 Q(2) · · · ×N Q(N). (15)

We can calculate the HOSVD of this reduced tensor

B = S ×1 U(1) ×2 U(2) · · · ×N U(N). (16)

As shown in [7], this decomposition can be com-
puted from the SVD of the unfolded matrices B(n) ∈
CKn×K1...Kn−1Kn+1...KN

B(n) = U(n) Σ(n) V(n)H

. (17)

The orthogonal matrices U(n) ∈ CKn×Kn , n ∈ {1, . . . , N}
of the HOSVD in (16) can be directly deduced from (17).
The core tensor S ∈ CK1×K2×···×KN can be obtained from
its matrix unfoldings, given by

S(n) = Σ(n)V(n)H

 N
⊗
m=1
m6=n

U(m)

∗ . (18)

Applying (16) to (15), we can recover the original tensor
X
X ≈ S ×1

(
Q(1)U(1)

)
×2

(
Q(2)U(2)

)
· · · ×N

(
Q(N)U(N)

)
≈ S ×1 Ũ

(1) ×2 Ũ
(2) · · · ×N Ũ(N). (19)

Observe that (19) can be related with the HOSVD
decomposition in (2), in which the orthogonal matrices
{Ũ(1), . . . , Ũ(N)} are directly obtained from the orthogonal
transformation of the columns of U(n), i.e. Ũ(n) ∆

= Q(n)U(n).
Analogously to the procedure described for the randomized

SVD, it is important to ensure that the range of each mode-
space of X is entirely covered. Consequently, we can also
consider an oversampling parameter p > 0 for constructing the
sample matrices Y(n) ∈ CIn×Kn+p from the random vectors
{w(m)

1 , . . . ,w
(m)
Kn+p}, m ∈ {1, . . . , n− 1, n+ 1, . . . , N}.

B. Structured random matrices

In randomized methods, a structured random matrix W ∈
Cn×k, such as the subsampled randomized Fourier transform
(SRFT) [4] or the subsampled randomized Hadamard trans-
form (SHRT) [22] among others presented by Liberty [23],
can be employed in order to produce an orthogonal basis for
the range of an input data X ∈ Cm×n, allowing a complexity
reduction of the multiplication Y = XW.

According to Woolfe et al. [1], an SRFT can be constructed
as

W =

√
n

k
D F E, (20)

where D is an n× n diagonal matrix whose complex entries
are randomly drawn from the unit circle, F is the n×n unitary
discrete Fourier transform with fn1,n2 = e−2πj(n1−1)(n2−1)/n,
and E

∆
= [ êi1 · · · êik ], with i1 6= · · · 6= ik and il ∈ {1, . . . , n},

is an operator that randomly selects k of n columns of the
product DF.

By employing the SRFT given by (20), we obtain a reduc-
tion in the multiplication cost to O(mn log(k)) as opposed to
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Algorithm 1: Randomized HOSVD - SVD via row-extraction.

1. Draw a SRFT matrix Ω(n) according to (21), ∀n ∈ {1, ..., N}.
2. Compute Y(n) = X(n)Ω(n), ∀n ∈ {1, ..., N}.
3. Compute an orthonormal basis Y(n) = Q(n)R(n), ∀n ∈ {1, ..., N}.
4. Initialize B̃(1) = X(1).
5. Compute an ID Q(n) = Λ(n)Q(n)(γ, :), with γ = [i1, ..., iKn+p].

6. Extract B̃(n)(γ, :) and compute a QR factorization of
(
B̃(n)(γ, :)

)H
:

B̃(n)(γ, :) = R̃(n)HQ̃(n)H .
7. Form the product Z(n) = Λ(n)R̃(n)H .
8. Compute an SVD Z(n) = Ũ(n)Σ̃(n)Ṽ(n)H .
9. Compute a reduced tensor B = B̃ ×n Q(n)H .
10. Update B̃ ← B.
11. Repeat step 5 to 10 for n = 1, ..., N .
11. Compute X signal = X ×1 Ũ(1)Ũ(1)H · · · ×N Ũ(N)Ũ(N)H .

O(mnk) flops for a standard Gaussian matrix, as proposed by
Martinsson et al. [3]. Note that the Fourier transform could be
replaced by the Walsh-Hadamard transform, as suggested in
[1].

There are several possibilities for constructing structured
random matrices based on the fast Fourier transform and
similar algorithms [4], [22], [23] for the previously mentioned
purpose. For the sake of simplicity, let us consider the SRFT
given in (20).

Applying (20) to (12), on can show that

Ω(n) =

√
I1 . . . IN
K1 . . .KN

D̄(n)F̄(n)Ē(n). (21)

C. Higher-order subspace method

According to the higher-order subspace method, it is possi-
ble to decompose given input data X into the sum of a signal
and noise subspaces as X = X signal + X noise.

The signal subspace X signal can be constructed using the
Ln singular vectors of U(n) associated with the Ln-th largest
singular values of each n-th mode, i.e.

X signal = X ×1 P(1) · · · ×N P(N), (22)

where P(n) ∆
= Ũ(n)Ũ(n)H

, for n ∈ {1, . . . , N}, are or-
thogonal projectors along each n-th mode and Ũ(n) ∆

=[
u

(n)
1 · · ·u(n)

Ln

]
are matrices containing the first Ln singular

vectors.
When the singular values associated with each n-th matrix

unfolding decay slowly, the smallest singular values can inter-
fere with the approximation, leading to an approximation of
poor quality. A known way to reduce this interference is by
taking power q of the matrix to be analyzed, i.e., X(n) [4].

IV. SIMULATION RESULTS

In this section, we compare the standard HOSVD, the
HOSVD by computing the randomized SVD (via row extrac-
tion) and the proposed randomized HOSVD.

For classical algorithms, the SVD of each unfolded ma-
trix X(n) requires approximately O(I1 · · · INKn) in contrast
with O

(
I1 · · · IN log(Kn) +

(
In +

∏N
m=1
m6=n

IN

)
K2

n

)
flops for the

HOSVD computed by the randomized SVDs, referred to as

TABLE I
COMPUTATIONAL COMPLEXITY FOR COMPUTING THE SINGULAR

VECTORS ASSOCIATED WITH EACH n MODE.

Method Computational complexity (flops)

Standard HOSVD O
(
Kn

N∏
m=1

Im

)

HOSVD-RandSVD O

C(1)
n +K2

n

N∏
m=1
m6=n

Im


Randomized HOSVD† O

(
C(1)

n + C(2)
n +K2

n

n−1∏
m=1

Km

N∏
m=n+1

Im

)
Randomized HOSVD‡ O

(
C(1)

n + C(2)
n +Kn

N∏
m=1

Km

)
† By computing direct HOSVD.
‡ By employing an extension of the row-extraction technique proposed in [4].

C(1)
n

∆
= log(Kn)

N∏
m=1

Im +K2
nIn, C(2)

n
∆
=

n∏
m=1

Km

N∏
m=n

Im.

HOSVD-RandSVD. The cost of randomized SVD is reduced
thanks to the use of a structured random matrix instead of a
general dense matrix W(n) and the SVD computed via row-
extraction [4].

Similarly, the use of a structured random matrix, as pro-
posed in (21), allows us to employ a fast method for computing
the product X(n)Ω(n) and for obtaining an orthonormal basis
B(n). We propose two ways to compute the randomized
HOSVD: by computing direct HOSVD of the reduced tensor
B, and by employing an extension of the row-extraction
technique proposed in [4]. The last proposed algorithm is
described in Algorithm 1. Table I shows the computation
complexity for computing the singular vectors associated with
each n mode.

In Figure 1 we give some examples of the impact of design
parameters by fixing K1 = K2 = K3 and I1 = I2 = I3 on the
complexity. Thus, the HOSVD by computing the randomized
SVD and standard HOSVD provide the lowest and highest
complexity, respectively. For these design parameters, we do
not observe a vast difference between the randomized HOSVD
computed via direct HOSVD and row-extraction.

To evaluate the proposed methods, we consider a 100 ×
100× 100 random tensor X with R = 10, generated by using
(3) and corrupted by different levels of noise. The perfor-
mances associated with the proposed methods are evaluated
making use of 50 Monte Carlo simulations. The normalized
mean squared error (NMSE), in dB, is regarded in signal
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Fig. 1. Computational complexity for an (I1 × I2 × I3)-tensor.
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Standard HOSVD
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Fig. 2. Approximation of signal subspace estimation for two values of q.

subspace estimation.
From Figure 2, it can be noticed that both randomized

HOSVD algorithms, referred to as RandHOSVD, tend to
present closer performances. The HOSVD by computing ran-
domized SVDs, referred to as HOSVD-RandSVD, provides
better performance than the randomized HOSVD algorithms.
However, the randomized HOSVD algorithms can improve the
approximation by increasing q near to the standard HOSVD.
As expected, the standard HOSVD estimates better the signal
subspace, but at the cost of higher computational complexity.

V. CONCLUSION

In this paper, we have proposed a method for improv-
ing dimensionality reduction before computing the HOSVD,
motivated by applications involving high-dimensional data
in which only a few sources have significant contributions.
It is a generalization of the randomized SVD for higher-
order tensors. We present two different ways to employ the
randomized HOSVD and compare with the standard HOSVD
and HOSVD by computing the randomized SVDs concerning
the NMSE of signal subspace estimation and computation
complexity taking the most onerous operations.

The greatest advantage of all proposed methods is to pro-
vide lower dimensionality representation and computational
complexity. The randomized HOSVD algorithms provide an
interesting tradeoff between the NMSE performance and com-
putational complexity. The randomized HOSVD method can
even be improved by conveniently adjusting the structured
random matrices. It can also be jointly employed with a
better truncation strategy for computing the HOSVD for the
purpose of reducing the number of required operations and
of improving the estimation error. Furthermore, our method
can be applied in a pre-processing step for dimensionality
reduction, which can lead to an improvement of the existing
adaptive methods for low-rank approximations.
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