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Abstract—We consider the approximate joint diagonalization
problem (AJD) related to the well known blind source separation
(BSS) problem within the Riemannian geometry framework. We
define a new manifold named special polar manifold equivalent
to the set of full rank matrices with a unit determinant of
their Gram matrix. The Riemannian trust-region optimization
algorithm allows us to define a new method to solve the AJD
problem. This method is compared to previously published
NoJOB and UWEDGE algorithms by means of simulations and
shows comparable performances. This Riemannian optimization
approach thus shows promising results. Since it is also very
flexible, it can be easily extended to block AJD or joint BSS.

Index Terms—approximate joint diagonalization; blind source
separation; Riemannian geometry; Riemannian optimization;
special polar manifold

I. INTRODUCTION

The approximate joint diagonalization (AJD) of a matrix set
is instrumental to solve the well known blind source separation
(BSS) problem [1]. It can be expressed as it follows: given a
set of K symmetric matrices {Ck}1≤k≤K of dimension n×n,
find a full-rank matrix B of dimension n×p (with p ≤ n) such
that the set {BTCkB}1≤k≤K contains matrices as diagonal as
possible according to some criterion.

A common diagonality criterion is the sum of squares of
the off-diagonal elements of the transformed matrices leading
to the minimization of the functional

f(B) =
K∑
k=1

∥∥off(BTCkB)
∥∥2
F
, (1)

where B ∈ Rnp, ‖.‖F denotes the Frobenius norm and off(·)
vanishes the diagonal elements of its argument.

While optimizing (1), we need to avoid the trivial solution
B = 0. Hence, some constraints on the joint diagonalizer are
usually added. A common choice is to fix the norm of the
columns of B [2]–[4]. Another solution, when B is square
(p = n), is to fix its determinant as proposed in [5]. In this
paper, we generalize this latter constraint to the non-square
case by fixing the determinant of the Gram matrix BTB of
B.

Even though the AJD has already been extensively studied,
proposed method are usually very specific to a cost function, a
constraint and an optimization algorithm. Here, we propose a
general framework based on Riemannian geometry that can
handle various cost functions and optimization algorithms.

Furthermore, except those methods that seek an orthogonal
diagonalizer [6] or that do not ensure full rank property [4],
existing algorithms can only deal with square joint diagonal-
izer. If one wants to apply a dimension reduction in this case, a
whitening step is mandatory [1], [7]. Such approach has been
shown suboptimal [6]. Hence, to the best of our knowledge,
we propose here the first method without severe limitations
that can properly handle dimension reduction.

The aim of this paper is to show that it is possible to tackle
the AJD problem within the Riemannian geometry framework.
This allows to turn constrained optimization problems on
embedded spaces into unconstrained problems on smooth
manifolds [8]. The idea is to use the geometrical properties of
the constraints to define a smooth manifold where the problem
is not constrained anymore. This allows to handle constraints
in a natural way. Riemannian approaches for AJD have already
been considered for example in [4]–[6]. Moreover, a link
between the Riemannian geometric mean of a set and its AJD
has been recently found [9]. None of proposed Riemannian
AJD methods suit well our purpose. They either make use
of unadapted manifolds as in [4], [6] (see above) or only
elements of Riemannian geometry are used and not the all
framework as in [5]. In this article, we define an appropriate
manifold for the AJD problem. In the following, we consider
p ≤ n. The manifold defined here is equivalent to the space
Bp,n = {B ∈ Rnp∗ : det(BTB) = 1} where Rnp∗ is the set of
full rank matrices and det(.) denotes the determinant.

This paper is divided into four sections including this intro-
duction. In Section II-A, tools needed to perform optimization
within the Riemannian framework are briefly introduced (see
[8] for details). In Section II-B, The well-known Stiefel man-
ifold [8] is presented. In Section II-C, a new manifold called
special symmetric positive definite manifold is defined and its
geometry is studied. The product of those two manifolds leads
to a new manifold named special polar manifold in Section
II-D. This latter manifold is shown to be equivalent to Bp,n
defined above using the polar decomposition. In Section II-E,
the objective function (1) is defined for the special polar
manifold and its gradient and Hessian are derived. Then, the
Riemannian trust-region method, which is chosen here as the
optimization scheme, is presented in Section II-F. In Section
III, the performance of the proposed method is analyzed and
compared to state-of-the-art AJD algorithms [2], [3]. Finally,
in Section IV, conclusions are drawn.
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II. METHOD

A. Tools for Optimization on Riemannian Manifolds

Riemannian optimization methods search for the next iterate
in the tangent space of the current iterate using Riemannian
differential geometry tools (Riemannian gradient, Riemannian
Hessian). The solution in the tangent space is then projected
back onto the manifold. In order to solve optimization prob-
lems within the Riemannian framework [8] one needs to define
the following mathematical objects:
• the projection map that projects a point of the embedded

space onto the tangent space at a given point of the
manifold;

• a suitable Riemannian metric on the tangent space;
• the Levi Civita connection, which is essential to be able

to define the Riemannian Hessian of a function;
• a retraction, which is a mapping from the tangent space

back onto the manifold.

B. Stiefel Manifold

The Stiefel manifold Stp,n = {U ∈ Rnp : UTU = Ip} is
well known. The reader is referred to [8] for proofs of the
following:

Stp,n is an embedded submanifold of the Euclidean space
Rnp of dimension np − 1

2p(p + 1). Its tangent space at U is
TUStp,n = {ξ ∈ Rnp : UT ξ + ξTU = 0} endowed with the
metric gU such that, for all ξ and η in TUStp,n,

gU (ξ, η) = tr(ξT η) , (2)

where tr(M) denotes the trace of M . For any matrix Z in
Rnp, the projection map PU on TUStp,n is given by

PU (Z) = Z − U sym(UTZ) , (3)

where sym(M) = 1
2 (M + MT ). The Levi Civita connection

∇ at U in Stp,n is defined, for η in TUStp,n and ξ in the set
of vector fields on Stp,n denoted X (Stp,n), as

∇ηξ = PU (D ξ(U)[η]) (4)

where D ξ(U)[η] denotes the directional derivative of ξ at U
in the direction η. A retraction RU is properly defined, for all
ξ in TUStp,n, by

RU (ξ) = qf(U + ξ) , (5)

where qf(M) returns the Q factor of the QR decomposition
of M .

C. Special Symmetric Positive Definite Manifold

Let Sp (respectively S++
p ) denotes the manifold of sym-

metric (respectively symmetric positive definite) matrices. We
define here the Special Symmetric Positive Definite manifold
Wp as the set {S ∈ S++

p : det(S) = 1}.

Proposition 1. Wp is an embedded submanifold of S++
p of

dimension 1
2p(p+ 1)− 1.

Proof. Wp is a subset of S++
p by definition. Consider the

function F defined for all S in S++
p as F(S) = det(S).

Clearly, the image of F is R+
∗ and Wp = F−1({1}). Let S

in Wp and X in Rpp, the directional derivative of F at S in
the direction of X is DF(S)[X] = tr(S−1X). Let x in R+

∗ ,
then X = x

pS is in S++
p and DF(S)[X] = x. This shows

that F is a submersion. Proposition 3.3.3 in [8] completes the
proof. �

Proposition 2. Wp is a connected manifold.

Proof. Consider the geodesic of S++
p defined for all S1 and

S2 such that for all t in [0, 1], γ(t) = S
1/2
1 (S

−1/2
1 S2S

−1/2
1 )tS

1/2
1

[10], where (·)t is the power t. If S1 and S2 are in Wp then
for all t, det(γ(t)) = 1. This is a consequence of det(MN) =
det(M) det(N) and det(M t) = (det(M))t. It follows that for
all S1 and S2 in Wp there exists a path in Wp that connects
them. �

Proposition 3. The tangent space of Wp at S is TSWp =
{X ∈ Sp : tr(S−1X) = 0} endowed with the metric g̃S such
that, for all ξ and η in TSWp, g̃S(ξ, η) = tr(S−1ξS−1η).

Proof. First note that since Wp is an embedded submanifold
of S++

p , it follows from Section 3.6.1 of [8] that TSWp is a
subset of TSS++

p = Sp [10]. Then, consider function F(S) =
det(S) again. The kernel of DF(S) is the set {X ∈ Sp :
tr(S−1X) = 0}. Equation (3.19) in [8] allows to conclude
that this corresponds to TSWp. Finally, the Riemannian metric
g̃S is inherited from S++

p [10]. �

Proposition 4. For all Z in Rpp, the projection map P̃S on
TSWp is given by P̃S(Z) = sym(Z)− 1

p tr(S−1 sym(Z))S

Proof. It is straightforward to check that P̃S verifies the
properties of the projection map. �

Proposition 5. The Levi Civita connection ∇̃ at S in Wp

is defined, for η in TSWp and ξ in X (Wp), as ∇̃ηξ =

P̃S(D ξ(S)[η]− sym(ηS−1ξ)).

Proof. Since Wp is a submanifold of S++
p , it follows from

Proposition 5.3.2 in [8] that ∇̃ηξ = P̃S(∇̂ηξ) where ∇̂ is the
Levi Civita connection of S++

p . Using the expression of ∇̂ that
can be found in Appendix B of [11] completes the proof. �

Proposition 6. A retraction R̃S is properly defined, for all ξ
in TSWp, by R̃S(ξ) = S1/2 exp(S−1/2ξS−1/2)S1/2.

Proof. R̃S defines a retraction on S++
p . Furthermore, if

det(S) = 1, then det(R̃S(ξ)) = 1 for any ξ in TSWp. This
comes from the fact that det(exp(M)) = exp(tr(M)) and
tr(MN) = tr(NM). This is enough to conclude. �

D. Special Polar Manifold

We are finally ready to define the manifold of interest. Let
us name Mp,n = Stp,n × Wp the Special Polar manifold.
First, we will investigate the link between Mp,n and Bp,n.

Proposition 7. The mapping π : (U, S) 7→ US is a one to
one correspondance between the elements of Mp,n and those
of Bp,n (usually denoted Mp,n ' Bp,n).
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Proof. The polar decomposition of B in Bp,n can be uniquely
defined such that B = US where U is in Stp,n and S is in
S++
p . One can show that since det(S) > 0, det(BTB) = 1

if and only if det(S) = 1. This shows that the mapping π
defined from Mp,n to Bp,n is bijective. �

As it is a product of Riemannian manifolds, Mp,n is a
Riemannian manifold [8]. Due to this fact, the proofs of the
following are immediate. The tangent space of Mp,n at B =
(U, S) is TBMp,n = TUStp,n × TSWp endowed with the
metric gB such that, for all ξ = (ξU , ξS) and η = (ηU , ηS) in
TBMp,n,

gB(ξ, η) = gU (ξU , ηU ) + g̃S(ξS , ηS) . (6)

For all Z = (ZU , ZS) in Rnp × Rpp, the projection map PB
at B = (U, S) on TBMp,n is given by

PB(Z) = (PU (ZU ), P̃S(ZS)) . (7)

The Levi Civita connection ∇ at (U, S) in Mp,n is defined,
for η = (ηU , ηS) and ξ = (ξU , ξS), as

∇ηξ = (∇ηU ξU , ∇̃ηSξS) . (8)

A retraction RB at B = (U, S) is defined, for all ξ = (ξU , ξS),
by

RB(ξ) = (RU (ξU ), R̃S(ξS)) . (9)

E. The Objective Function on Mp,n

In order to perform AJD on Mp,n within the Riemannian
framework, we need to define the objective function along
with its Riemannian gradient and Hessian on the manifold.

1) Objective Funtion: Using the mapping π defined in the
previous section, one can easily find that the cost function f
on Mp,n corresponding to (1) is defined as

f(U, S) =
K∑
k=1

∥∥off((US)TCkUS)
∥∥2
F

=
K∑
k=1

tr(off((US)TCkUS)(US)TCkUS) .

(10)
Let f̂ denotes the same function defined on Rnp ×Rpp rather
than on Mp,n. f is then the restriction of f̂ to Mp,n. This
latter function f̂ will be useful to obtain the gradient and the
Hessian of f .

2) Gradient: The gradient of f at B = (U, S) inMp,n, de-
noted grad f(B), corresponds to the only element of TBMp,n

such that for all ξ in TBMp,n, gB(grad f(B), ξ) = Df(B)[ξ]
[8].

In practice, it is simpler to find grad f̂(B), the gradient of
f̂ at B = (U, S) in Rnp × Rpp and then deduce grad f(B).
Basic calculations lead to

D f̂(B)[ξ] =
K∑
k=1

4 tr(ξTUCkUS off((US)TCkUS)ST )

+
K∑
k=1

4 tr(ξTSU
TCkUS off((US)TCkUS)) .

(11)

It follows that

grad f̂(B) =

(
K∑
k=1

4CkUS off((US)TCkUS)ST ,

K∑
k=1

4UTCkUS off((US)TCkUS)

)
.

(12)

Finally, by denoting grad f̂(U) (respectively grad f̂(S)) the
first (respectively the second) component of grad f̂(B), one
can check that grad f(B) is properly defined as

grad f(B) =
(

PU (grad f̂(U)),

P̃S(S sym(grad f̂(S))S)
)
.

(13)

3) Hessian: The Riemannian Hessian [8] of f at B inMp,n

is the linear mapping defined for all ξ = (ξU , ξS) in TBMp,n

by Hess f(B)[ξ] = ∇ξ grad f , which is still in TBMp,n.
Here again it is possible to find Hess f̂(B) and then deduce

Hess f(B). One can show that Hess f̂(B) is given by

Hess f̂(B)[Z] = D grad f̂(B)[Z] =(
K∑
k=1

4Ck(V̇ MkS
T + V ṀkS

T + VMkZ
T
S ),

K∑
k=1

4ZTUCkVMk + 4UTCk(V̇ Mk + V Ṁk)

)
,

(14)

where Z = (ZU , ZS) is in Rnp × Rpp, V = US, V̇ =
ZUS + UZS , Mk = off(V TCkV ) and Ṁk = off(V̇ TCkV +
V TCkV̇ ).

The first (respectively second) component of Hess f(B)[ξ]
is denoted Hess f(U)[ξ] (respectively Hess f(S)[ξ]) where ξ is
in TBMp,n. The same notations are used for f̂ . It follows that

Hess f(U)[ξ] = PU (Hess f̂(U)[ξ])

− PU (ξU sym(UT grad f̂(U)))

Hess f(S)[ξ] = P̃S(S sym(Hess f̂(S)[ξ])S)

+ 2P̃S(ξS sym(grad f̂(S))S)

+ P̃S(D P̃S [ξS ](S sym(grad f̂(S))S))

− P̃S(sym(ξSS
−1 grad f(S))) ,

(15)
where for all Zs in Rpp and ξS in TSWp

D P̃S [ξS ](ZS) = 1
p tr(S−1ξSS

−1 sym(ZS))S

− 1
p tr(S−1 sym(ZS))ξS .

(16)

F. The Trust-Region Method

We will minimize f over the manifold Mp,n by a standard
second-order Riemannian optimization algorithm, the Riem-
mannian trust-region method [8]. We sketch here the main
idea of this algorithm and refer to Chapter 7 in [8] for more
details. Starting from an initial point B0 in Mp,n, a sequence
of iterates {Bl} is computed in order to find a minimizer to the
cost function f . To do so, a model mBl

of f around the iterate
Bl is constructed using the second-order Taylor expansion for
ξ in TBl

Mp,n such as

mBl
(ξ) = f(Bl) + gBl

(grad f(Bl), ξ)
+ 1

2 gBl
(Hess f(Bl)[ξ], ξ).

(17)

2016 24th European Signal Processing Conference (EUSIPCO)

212



This model is considered to be valid in a trust-region defined
as a ball in TBl

Mp,n with radius ∆l. It is then needed to find
the solution ξl to the subproblem of minimizing mBl

within
the ball of radius ∆l in the tangent space of Bl. This is done
using the truncated conjugate-gradient method. The candidate
next iterate is then RBl

(ξl). This candidate is evaluated to
check that the model mBl

at ξl is valid. If it is the case, the
candidate is accepted and the radius ∆l can even be increased
if the model is very good. Otherwise, the candidate is rejected
and ∆l is decreased. The stopping criterion is defined by the
norm of the Riemannian gradient lower than a tolerance (fixed
at 10−5 in our numerical experiments).

III. RESULTS

In order to estimate the perfomances of our method, named
RAJD (for Riemannian AJD), we simulated data and compared
it to NoJOB [2] and UWEDGE [3]. RAJD was performed
using manopt toolbox [12] in Matlab (c) with modifications
in order to use the new manifold defined here.

To analyze how the methods behaved, we used two criteria.
The first one is the Moreau-Amari index IM-A [13] defined as

IM-A = 1
2n(n−1)

 n∑
i=1

 n∑
j=1

|Hij |

max
1≤j≤n

|Hij | − 1


+

n∑
j=1

 n∑
i=1

|Hij |

max
1≤i≤n

|Hij | − 1


where H = BTA, with B the estimated unmixing matrix and
A the true mixing matrix. The second one is a measure of
non-diagonality In-d of the transformed dataset defined as

In-d =
1

K(n− 1)

K∑
k=1

∥∥off(BTCkB)
∥∥2
F

‖diag(BTCkB)‖2F
where diag(M) denotes the diagonal part of the matrix M .

We performed 200 tests. For each test, as it is done in [3],
we generated K = 100 matrices {Ck}1≤k≤K of dimension
n× n according to

Ck = ADkA
T +

1

2σ
(Nk +NT

k )

where A is a non-orthogonal mixing matrix with i.i.d. el-
ements generated from a normal distribution N (0, 1). We
controlled the non-orthogonality by constraining the condition
number with respect to inversion between 3 and 7. Matrices
{Dk}1≤k≤K are diagonal with i.i.d. elements generated from
a chi-squared distribution corresponding to the power of the
sources in the BSS problem. σ is a free parameter defining
the noise level and Nk is a noise matrix with elements
drawn independently from a normal distribution N (0, 1). No
dimension reduction was performed (i.e., p = n) and all
algorithms were initialized with the identity.

In figure 1, the Moreau-Amari index IM-A of the three
methods for n = 8 as a function of the noise parameter σ
is presented. One can see that all three methods have similar
behaviours even though UWEDGE gives, in general, results

Fig. 1. Median and quantiles (5% and 95%) over 200 tests of the Moreau-
Amari index as a function of the noise parameter σ for the three methods
for n = 8. All three methods have comparable performance. UWEDGE have
slightly better results. See text for details.

Fig. 2. Median and quantiles (5% and 95%) over 200 tests of the non-
diagonality measure as a function of the noise parameter σ for the three
methods for n = 8. Again, all three methods have comparable results. RAJD
diagonalizes the datasets better than the other methods. See text for details.

slightly closer to the true solution. In figure 2, we plotted
the non diagonality measure In-d as a function of the noise
parameter σ for all methods for n = 8. It can be noticed
that here RAJD diagonalized the datasets better. Even though
RAJD and NoJOB succeeded better in diagonalizing the
datasets, the solutions found by UWEDGE are generally closer
to the true solutions. This reflects the fact that when noise is
added, the true solution does not necessarily correspond to the
one that diagonalizes the dataset better.

In figures 3 and 4, we studied the effect of the dimension
n of the matrices Ck for the three methods for σ = 100.
As expected, the results deteriorate when n increases for all
methods. Moreover, we still have comparable performance
for all methods and it is consistent with results obtained
when the influence of the noise was studied. Indeed, the joint
diagonalizer of UWEDGE is generally slightly closer to the
true solution (see figure 3) and RAJD diagonalizes the datasets
better (figure 4). This shows that RAJD is still a valid method
when the dimension of the problem is increased.

RAJD and NOJoB use the same cost function (1) but the
cost function of UWEDGE is slightly different [3]. Our results

2016 24th European Signal Processing Conference (EUSIPCO)

213



Fig. 3. Median and quantiles (5% and 95%) over 200 tests of the Moreau-
Amari index as a function of matrices dimension n for the three methods
for σ = 100. The performance decreases when the dimension increases. All
methods have comparable performances. See text for details.

Fig. 4. Median and quantiles (5% and 95%) over 200 tests of the non-
diagonality measure as a function of matrices dimension n for the three
methods for σ = 100. The performance decreases when the dimension
increases. All methods have comparable performances. See text for details.

suggest that objective function (1) leads to an overfitting of
the data. This indicates that the Riemannian method that we
considered is efficient in minimizing (1) but this function
seems not to be well suited for our purpose. Furthermore,
the fact that RAJD gave better results for In-d than NOJoB,
which uses the same cost function, suggest that Riemannian
optimization on the special polar manifold is a promising tool.
The use of a more appropriate cost function may lead to
better results as compared to state of the art methods such
as UWEDGE.

IV. CONCLUSION

In this article we have properly defined the special polar
manifold allowing the investigation of the AJD problem from
a Riemannian optimization point of view. Of course, this new
manifold may turn useful in many other problems. The results
we obtained for the AJD problem are encouraging and the
limits encountered seems to be related to objective function
we have considered. Other cost functions such as the ones
in [3] or [14] are under consideration and will be presented

in future works. Other Riemannian optimization algorithms
can also be investigated. Note that since accuracy is sought
here, second order algorithms (using Riemannian Hessian or
approximation of it) should be preferred. We are also interested
in studying direct dimension reduction allowing to avoid the
usual whitening step, with possible gain in precision.

This study shows that working within the Riemannian
geometry framework is appropriate to solve the AJD problem.
Furthermore, unlike the strategies discussed in the introduc-
tion, this approach allows to easily change the optimization
scheme or the cost function, as long as this latter is smooth.
Other related models can also simply be considered such as
extensions to block AJD or joint BSS [7].
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