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Abstract—We still have very little knowledge about how our
brains decouple different sound sources, which is known as
solving the cocktail party problem. Several approaches; including
ERP, time-frequency analysis and, more recently, regression and
stimulus reconstruction approaches; have been suggested for
solving this problem. In this work, we study the problem of
correlating of EEG signals to different sets of sound sources with
the goal of identifying the single source to which the listener is
attending. Here, we propose a method for finding the number of
parameters needed in a regression model to avoid overlearning,
which is necessary for determining the attended sound source
with high confidence in order to solve the cocktail party problem.

Index Terms—attention, cocktail party, linear regression (LR),
finite impulse response (FIR), multivariable model, sound, EEG.

I. INTRODUCTION

It is well known that humans can effortlessly separate
different sound sources and attend to only one of these sources
in a complex environment, a so-called cocktail party, as first
described in 1953 [1]; however, still very little is known
about how this is achieved. Different sound sources excite
different responses in human brain activity, but it is highly
challenging to determine these responses and the durations of
their effects on the brain in electroencephalographic (EEG)
and magnetoencephalographic (MEG) signals. In this study,
we introduce a model-based learning approach to study this
problem. A forward (causal FIR) model from sound to EEG
is proposed.

Recently, it has been shown that EEG data can be used to
determine attention in a two-speaker environment [2]. Follow-
ing the realization that brain activity follows the amplitude
of the sound envelope, various regression approaches were
developed to gain a better understanding of the auditory system
[3], [4]. This understanding could also contribute to advances
in cognitive hearing aids (HAs). Whereas modern HAs use
beam-forming to emphasize sounds coming from one direction
while ignoring the other sounds and have no knowledge of
the sound source attended to by the listener, next-generation
cognitive HAs may have the ability to find the sound source
to which a listener is directing his or her attention.

Regression methods and stimulus reconstruction approaches
have already been successfully applied to intracranial EEG or
electroencephalographic (ECoG) data [4], [5], [6], MEG data
[3], [7] and EEG data [8], [2]. Although impressive results
can be obtained using ECoG data, ECoG measurements are
invasive and can only be used with listeners under medical
care; as such, these approaches are not plausible for everyday
applications. Studies performed on MEG data have shown that
the envelope of the input sound can be estimated and that the
resulting estimate is generally more strongly correlated with
attended sound than with unattended sound. However, MEG
instruments are costly, not portable and not readily available,
which makes them difficult to use in real-time devices. By
contrast, EEG instruments are relatively cheap, more widely
available and portable, making it possible to incorporate them
into many real-time devices. For portable devices such as HAs,
EEG measurements are a potentially realistic tool because they
are non-invasive and, recently, considerable progress has been
made in the development of wearable EEG devices [9], [10],
[11], [12].

Various approaches that can solve the cocktail party problem
to some extent have been suggested. In [13], EEG features
(a cross-correlation measure, the power in the α band and
a measure of the auditory steady-state response (ASSR))
were extracted and fed into a linear discriminant classifier.
In [14], canonical correlation analysis (CCA) and mapping
from EEG signals to sound with both single-channel inversion
(AESPA) and all-channel inversion (optimal) were tested, and
the obtained decoding accuracies were 65 − 80 % for CCA
and AESPA and 75−95 % for the optimal approach for 60-s-
long samples. Recently, non-linear approaches based on deep
neural networks (DNNs) were evaluated in [15], [16] because
DNNs offers a wide range of different possibilities, although
at higher computational costs. In addition, one study has also
investigated whether it is possible to further improve encod-
ing/decoding performance by incorporating knowledge about
the peripheral auditory system into the process of extracting
the sound envelope [17]. A recent study [2] demonstrated
that neural processing at approximately 200 ms is critical for
solving the cocktail party problem when mapping from EEG
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signals to sound.
A common feature of these studies is that they have all

proposed inverse models for proceeding from EEG signals
to sound, that is, anti-causal FIR models. The disadvantages
of such models include a lack of understanding of dynamic
effects and difficulties in real-time implementation. Here, we
consider only real-time-implementable solutions. Therefore,
in this study, we consider only forward models (causal FIR
models) because such models can be implemented in real time
and integrated into many everyday devices. In the literature,
FIR models with reverse causality are typically used. Incoming
sound leaves traces in EEG signals within several tens of
milliseconds, but it is not known exactly when. To solve this
problem, we propose a technique based on linear regression
and the F distribution to select an appropriate number of
parameters with minimal losses.

II. PROBLEM FORMULATION

The cocktail party problem arises when a number of persons
i = 1, 2, . . . , nu emit sound signals simultaneously and a
listener receives the sum of these signals, i.e.,

utotal =

nu∑
i=1

ui(t) (1)

The assumption is made that the listener is attempting to focus
on only one speaker at a time, and the technical challenge is
to determine which of the speech signals ui(t) is the subject
of focus based on external sensor measurements, here, EEG
signals yj(t), with j = 1, 2, . . . , ny .

Usually, the problem includes the following:
• nu different sound sources ui(t). In the experiment

considered in this study, nu = 2.
• ny different EEG signals yj(t). In our experiment, we

have access to full-scalp EEG signals, with ny = 128.
The primary goal of this study is to determine to which of
nu sound sources the listener is attending. When the sound
sources are available digitally, it is straightforward to amplify
one and attenuate the others.

III. SIGNAL PRE-PROCESSING

Our experiment can be described as follows:
• A subject was asked to attend to a sound source on the

right, u2, in all 30 trials.
• Each trial was approximately one minute long.
• In each trial, the subject was presented with 2 works of

classic fiction in the left and right ears concurrently.
• EEG data were collected at a sampling frequency of 512

Hz.
These data were previously analyzed in [2] using different
analysis tools.

Because the sampling rates of the sound and EEG sig-
nals were different and EEG signals measure energy rather
than amplitude, as in the case of speech signals, some pre-
processing was required:

• The EEG signals were filtered with a band-pass Butter-
worth filter between 1 and 8 Hz, i.e., the delta and theta
bands, and down-sampled to 64 Hz.

• The envelopes of the sound sources were obtained by
using the Hilbert transform of the fast sampled u(t)
signals and down-sampled to the same sample rate as
that of the EEG signals.

IV. MODEL FORMULATION

In the literature, linear models are often used to solve the
cocktail party problem. A causal FIR model (FIR(k)) can be
described in terms of the following difference equation:

y(t) = b0u(t) + b1u(t− 1) + · · ·+ bky(t− k) + e(t) (2)

where e(t) is the disturbance and k is the order of the model.
Generally, e(t) is considered to be white noise, E(e(t)) = 0
and V ar(e(t)) = λ. Using the shift operator q in the time
domain, qu(k) = u(k + 1), we can rewrite (2) as:

y(t) = (b0 + b1q
−1 + b2q

−2 + · · ·+ bkq
−k)u(t) + e(t) (3)

This leads to the transfer operator B(q) = b0 + b1q
−1 +

b2q
−2 + · · ·+ bkq

−k. Now, we can express (3) as:

y(t) = B(q)u(t) + e(t) (4)

where B(q) is the causal polynomial.
In the literature, an FIR model with reverse causality is often

used, with the following form:

u(t) = A(q)y(t) + v(t) (5)

where A(q) is the anti-causal polynomial.
A causal FIR single input multiple output (SIMO) models

based on (4) for each sound source can be expressed as a
linear regression (LR):

Y = Ui ·Bi + E, i = 1, 2, . . . , nu (6)

where Bi is nb×ny Henkel matrix, Y and E are N ×ny , Ui
is N × nb and nb = k + 1. In (6), the goal is to estimate Bi.

V. MODEL ORDER SELECTION

Let ε be defined as ε = y(t)−BTui(t). A least square (LS)
estimation problem can be written as

B̂ = argmin
B

N∑
t=1

[εΛ−1ε] (7)

where Λ =

λ1 . . . 0
...

. . .
...

0 0 λny

 which allows us to come

B̂i = [
1

N

N∑
t1

ui(t)ui(t)
T ]−1[

1

N

N∑
t1

ui(t)y(t)T ] (8a)

B̂i = [UTi · Ui]−1 · [UTi · Y ] (8b)
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The LS criterion is now:

V̂ iN (k) = min
Bj

ny∑
j=1

λj [
N∑
t=1

(yj(t)−BTj ui(t))2] (9)

Since all Bs are independent, this sum is minimized by indi-
vidually minimizing the inner summation terms, independently
of Λ. Now, loss function becomes

V̂ iN (k) =
1

N
min
Bi

N∑
t=1

‖y(t)−BTi ui(t)‖2 (10)

One idea is to select the sound source which minimizes loss
function V iN (k) [18]:

V̂ iN (k) = arg min
B

V iN (k) (11)

V iN (k) = ‖Y − UiBi‖2F (12)

Frobenius norm ‖W‖2F = trace(WTW) is used for matrix-
valued residuals V iN (k).

First, the quadratic form of the minimizing loss function
V̂ iN (k) can be calculated as

V̂ iN (k) = Y T (I − Ui(UTi Ui)−1UTi )Y (13)

Now, a non-standard problem in this application compared
to examples in the system identification literature is the
extremely small decrease in the loss function, meaning that
degree of explanation (in percent) 100(1 − V iN (k)/V iN (0)) is
rather close to zero, compared to applications where the model
explains most of the data where this degree is close to one.

The question that arises is how over-learning can be avoided.
When the number of measurements N is small relative to the
number of parameters nb, LR can possibly result in over-
learning. In this study, we attempt to find the best nb for
avoiding over-learning because such models typically yield
relatively low predictive performance.

It is easy to formulate an LR problem, but even if the
problem is correctly posed, it is necessary to determine what
the expected value for V iN (k)/V iN (0) is if Ui contains pure
noise. The answer to this question is partially given in [19] for
single-output models and here we extend it to SIMO models
as stated in Lemma 1.

Lemma 1. Assume that Ui and Y can be described by a model
structure Υ1:

Y = Ui1Bi1 + E1 (14)

where E1 is white Gaussian noise with variance matrix Λ
defined in (7). Let

V
(1)
N = min

B1

‖Λ−1/2(Y − Ui1 ·Bi1)‖2F (15)

Suppose that we have another model structure Υ2 with another
regressor,

Y = Ui1Bi1 + Ui2Bi2 (16)

and its loss function is

V
(2)
N = min

B1,B2

‖Λ−1/2(Y − Ui1 ·Bi1 − Ui2 ·Bi2)‖2F (17)

Let k1 = size(Bi1, 1) , k2 = size(Bi2, 1) and M = N−k1−k2.
Then, we have:

t(k1, k2, N) =
M

V
(2)
N

·
V

(1)
N − V (2)

N

k2
∈ F (k2,M) (18)

Proof. We start with proving

V
(2)
N ∈ χ2(ny ·M) (19)

Let UiBi = [Ui1Bi1 Ui2Bi1] = [Ui1 Ui2][Bi1 Bi1]T

with dimensions N× (k1 +k2). Replacing it in (17), we have:

Y − UiBi = Y − Ui(UTi Ui)−1UTi Y = GNY

= GN (UiBi +WN ) = GNWN

where GN = I − Ui(U
T
i Ui)

−1UTi is idempotent matrix,
GNGN = GN and all its eigenvalues are either zero or
one. We also have the identity trace GN = trace I −
trace ((UT

i Ui)
−1UT

i Ui) = N − (k1 + k2) = M. Thus, M
is the number of eigenvalues that are one and the remaining
k1+k2 eigenvalues are zero. Due to its symmetry property, GN
can be diagonalized by orthogonal matrix Q as Γ = QGNQ

T

where Γ is diagonal matrix with M ones and k1 + k2 zeros.
Now we have:

V
(2)
N = trace([Λ−1/2(Y −UiBi)]

T[Λ−1/2(Y −UiBi)])

= trace(WT
NGT

NΛ−1GNWN) = trace(Λ−1WT
NGNWN)

= trace(Λ−1(QWN)TΓ(QWN)) =

ny∑
j=1

λ−1
j

M∑
t=1

ŵ2
j (t)

Because the elements of WN are independent and normal with
variances in Λ and Q is an orthogonal matrix, the elements of
QWN are also independent and normal, and by the definition
of the chi-squared distribution, we have λ−1

j

∑M
t=1 ŵj

2
(t) ∈

χ2(M) and total sum follows a χ2 distribution with ny ·M
degrees of freedom, that is, V (2)

N ∈ χ2(ny ·M).
In similar manner, it is easy to prove that (V

(1)
N − V (2)

N ) ∈
χ2(ny · k2) and V (1)

N − V (2)
N and V (2)

N are independent. Now,
together with the definition of the F distribution, we have:

t(k1, k2, N) =
M

V
(2)
N

·
V

(1)
N − V (2)

N

k2
∈ F (k2,M) q.e.d.

Lemma (1) tells us whether it is useful to include Bi2,
from which we can obtain a suitable size for the model
set and model Υ2 as a suitable model structure. It follows
that if the model Υ1 given in (14) is sufficient and it is
unnecessary to consider Υ2, then the normalized decrease in
the loss functions has the distribution given in (18). Model Υ1

does not hold, and therefore, model Υ2 should be considered,
when the computed decrease is significantly greater, i.e., if
t(k1, k2, N) > Fα(k2,M), where α is the critical value.

If we assume that the true model Υ1 is only noise, i.e.,
Y = E1, then we can take k1 = 0. We can use k2 parameters
in the model that attempts to model the noise to achieve a
high confidence in our classification. The results will be F
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distributed.
Lemma 1 is very much in spirit like Akaike information

criteria (AIC). If we have a range of possible model orders
and we wish to see which order is the best suited to our
purposes, we can apply Lemma 1 over a range of different
k2 values while keeping the k1 value fixed. It may occur that
the desired confidence is obtained for more than one model
order. The typical choice in this case would be to select a
relatively low or the lowest order. However, it may be the
case that this is not the best choice because it is possible that
t(ki, kj , N) > Fα(kj ,M) where ki and kj are the parameters
for which the desired confidence is obtained. In this study, we
attempt to address this issue.

Corollary V.1. To determine whether the inclusion of a
higher-order model Υ3, where Υ1 ⊂ Υ2 ⊂ Υ3, is ”necessary”
to solve the cocktail party problem, Eq. 17 becomes Eq. 14,
knew1 = kold2 , and the new model Υ3 will be

Y = Ui1Bi1 + Ui2Bi2 + Ui3Bi3 (20)

with knew2 = k3 = size(Bi3, 1) and Mnew = N − k1 − k2 −
k3. Then, Lemma 1 can be used to determine whether it is
necessary to include the regressor Ui3Bi3 in the regression.
If t(knew1 , knew2 , N) > Fα(knew2 ,Mnew), then the answer is
”Yes”. This process can be repeated depending on the critical
value α and the desired performance.

VI. CLASSIFICATION

If the appropriate order of the model can be found, it should
be easy to perform simple LS estimation (8a) - (8b). The
cocktail party problem is now to see which input signal gives
the smallest cost. That is, we do not need estimate Bi itself,
just the cost function at minimum V̂ iN (k) given in (11).

Then, as the first possibility, we can determine the attended
sound source by

î = arg min
i
V̂ iN (k) (21)

VII. EXPERIMENTAL RESULTS

For simple LS estimate to be consistent, i.e. B̂i to converge
to the true value, it is necessary that UTi Ui is non-singular.
Otherwise, regularization is needed. This will be the case if
N > nb and columns in Ui are linearly independent. Then,
B̂i can be computed as in (7). The experimental results show
that once the number k2 becomes 90 or higher, one of the
matrices UTi Ui becomes singular leading to inconsistency and
over-fitting.

In models Υ1 and Υ2, the model estimate B̂i will be
incorrect, and there is a trade-off between bias (meaning that
the model is not sufficiently flexible) and variance (meaning
that the disturbance E influences B̂i and causes variations
among repeated observations). We start with N corresponding
to one trial (estimation for one batch of one minute).

Next, we seek to determine the number of parameters
required to achieve a high confidence in classification. First,
we wish to see how many parameters are required to achieve
a classification confidence of α = 0.6.

As the first step, we assume that model Υ1, i.e., the true
model, is only noise such that B = 0 and k1 = 0; therefore,
the loss function becomes

V
(i1)
N = ‖Y ‖2F (22)

In model Υ2, we distinguish the two different cases of attended
and unattended sound sources, i.e.,

V
(i2)
N = ‖Y − Ui ·Bi‖2F , i = 1, 2 (23)

First, we fix k1 = 0 and select k2 values from the range
[1 90] to find all model orders, if any, for which confidence
of α or higher is achieved. The results are shown in Fig. 1
where confidence levels averaged over 30 trials are shown for
k2 ∈ [1 90]. As seen from this figure, the average confidence
is greater than α for multiple model orders, and the highest
confidence is obtained for k2 < 30. However, because Fig. 1
shows only the means across 30 trials for k = 90 parameters,
this plot may not be reliable because there might be large
deviations in the data. One suitable tool for further visualizing
the consistency of the data is a box plot. The model of order k
with the highest 25th percentile for both sound sources will be
regarded as having the ”most necessary” parameters. Because
we wish to allow for some flexibility in the model, Fig. 2
shows the results obtained for k2 ∈ [10 29].

Here, we are seeking the number of parameters for which
the 25th percentile is above α for both sound sources. This is
seen to be the case for k2 = [10 11 12 17]. To decide which
k2 value yields the best-fit LR, we apply Corollary V.1. The
confidences averaged across 30 trials are less than .1 and .3
when we set knew1 = 10 and test whether the inclusions of
regressors with 11 and 12 parameters are ”necessary”. From
this, we can see that if we need to choose a model with a
number of parameters 10,11 or 12, a model with 10 parameters
is appropriate. When we set knew1 = 10 and knew2 = 7, we
find that the average confidence for sound source 2 is greater
than 0.5, which tells us that the inclusion of a model of order
16 is necessary if we set α = 0.5. From this, we can conclude
that the FIR(16) model should be used to solve the cocktail
party problem for this subject.

To illustrate the pragmatic value of Lemma (1), we then
study the difference in quadratic loss values, i.e., V̂ 1

N (16) −
V̂ 2
N (16). From Fig. 1 - 2, we can see that this difference

averaged across 30 trials is positive, i.e., V̂ 1
N (16) > V̂ 2

N (16).
From (21), we have:

î = arg min
i
V̂ iN (16) = 2 (24)

demonstrating that the listener, in average, was attending to
the sound source 2.

In addition, we also select a subset of the electrodes, i.e.,
those at the temporal lobe close to the ears, to investigate the
extent of model loss for this subset and whether results similar
to those for the full-scalp EEG data can be obtained. Ear-EEG
refers to in-ear devices/hearables that contain electrodes and
are placed in or near the ear to serve as practical devices for
all-day use. We know from previous studies that the signals
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Fig. 2. Box-plot results for k2 ∈ [10 29] for (a) sound source 1 and (b)
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from Ear-EEG electrodes are highly correlated with those
from temporal- lobe electrodes [20]. A subset consisting of 24
electrodes (12 electrodes on each side) was selected. Similar
results were found, i.e., FIR(16) should be used in LR.

VIII. CONCLUSION

In this study, we studied the problem of over-learning and
how it can be avoided. The method suggested here can be
used to determine the optimal order for any FIR model;
therefore, it can be used as a tool for solving the cocktail
party problem. The advantages of this model are that it is
linear in all parameters and the least-squares criterion provides
an analytical solution for all parameters. Additionally, this
model can be implemented in real time. Using this approach,
we found that the FIR(16) model is needed to avoid over-
learning in LR and demonstrated how large a difference in
losses between 2 sources is necessary to achieve significance
in sound source classification. To summarize, a contribution of
the present article is a real-time model for determining order
of FIR filter in context of regression model learning, tailored
to solving the cocktail party problem.
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