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ABSTRACT 
 
Partial discharge (PD) detection plays a fundamental role 
in monitoring the health of medium voltage (MV) systems. 
This paper presents a method for PD detection and source 
recognition in MV sub-stations based on a combination of 
signal processing techniques. Firstly, PD detection and sig-
nal conditioning is carried out. Then, PDs of different 
sources are separated and finally classified by means of the 
extension set theory. The obtained results show a classifi-
cation effectiveness of 100% on single source PDs and an 
effectiveness of 72.5% in multisource PDs, where PDs 
from many sources are captured in the same data set.  
 

Index Terms— partial discharge, PD, pattern recogni-
tion, classification, extension set theory.  
 

1. INTRODUCTION 
 
A partial discharge (PD) is a localized electrical discharge 
which manifests itself as a high frequency, short duration 
signal that may be propagated through the cables and equip-
ment of an electrical network. Their detection and source 
identification may lead to medium voltage (MV) network 
health monitoring, providing useful information to network 
owners for operation and maintenance programming and 
investments.  
 
Traditionally one of the most complete representation 
methods of PD data has been the so-called phase-resolved 
partial discharge (PRPD) patterns. Here a discharge quan-
tity (such as the magnitude or the number of discharges) is 
plotted against the ac phase. The success of such plots to 
represent different types of PD can be attributed to the fact 
that they can be related to parameters physically describing 
the PD process [1]. One of the major drawbacks of phase 
plots is that they have limited use in online measurements 
where the data may be corrupted by pulse-shaped interfer-
ence or multiple sources being simultaneously present. 
 
In the recent years, new PD detection and identification 
methods based on artificial intelligence techniques have 
been developed. For example, fuzzy clustering [2] and neu-
ral networks (NN) [3] have been extensively used in PD 
recognition. The fuzzy approaches require human expertise 
and have been successfully applied to this field. However, 

there are difficulties in acquiring knowledge and in main-
taining the database. The main advantage of the NN is that 
they can directly acquire experience from the training data. 
A great limitation of the NN approach is the inability to use 
a linguistically descriptive output, because it is difficult to 
understand the content of a network. 
 
Recently, new PD detection and classification techniques 
have been designed. An approach based on the radial basis 
function (RBF) NN for identifying insulation defects of 
high-voltage electrical apparatus arising from PD has been 
developed [4]. Although the operation speed of neural net-
works allows real time PD classification, its training pro-
cess can be often slowly depending on the amount of dif-
ferent patterns that are available. 
 
The following chapters describe a new method to success-
fully detect and classify PD sources, overcoming the diffi-
culties of the aforementioned techniques. In order to do so, 
a combination of PD pattern recognition, source separation 
and pattern classification methods have been applied. A 
general block diagram of the proposed system is shown in 
Figure 1. 

 
Fig. 1.  General block diagram 

 
2. PD DETECTION AND CONDITIONING 

 
Partial discharges in medium voltage (MV) systems have 
been detected with a single two-output sensor: one of the 
outputs gives the high-frequency signal present in the MV 
system and contains the PD signals generated in the MV 
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system. The other low-frequency output represents the at-
tenuated power frequency energy carrying sinusoid which 
is used for PD phase estimation. 
Unfortunately, the medium-voltage system does not oper-
ate in an ideal environment. That is why many artifacts may 
appear in the high-frequency components signal such as 
white noise, oscillations, impulsive noise, etc.  These arti-
facts can modify the waveform of partial discharge signals 
or they can even be detected as if they were PDs. To avoid 
this, signal processing techniques are applied to condition 
the signal before its analysis and classification. 
 
2.1. PD denoising 
 
Thanks to some denoising methods, the resulting high-fre-
quency signal becomes a much smoother signal, where PDs 
can then be detected easily. In addition, other measures are 
also applied to each detected peak so that falsely detected 
PDs are rejected. As a result, white noise, impulsive noise, 
reflections, and both oscillations produced by reflections 
and very high amplitude PDs are discarded. All this leads 
to a correct detection stage, which is extremely important 
for subsequent stages.  
Firstly, discrete wavelet transform (DWT) can be used to 
successfully eliminate white noise [5]. The effects of this 
method can be seen in Figure 2. Although PD amplitude is 
decreased, noise is considerably reduced.  

 
Fig. 2.  Discrete wavelet transform (DWT) denoising 

 
This denoising is achieved by means of a 3 level DWT, 
from which detailed and approximate coefficients are ob-
tained. For this particular application, the mother wavelet 
'Symlet 9' has been chosen, which has been shown to be the 
most suitable for PD signal conditioning [6]. After the de-
composition, the most meaningful coefficients are discrim-
inated with hard thresholding. Finally, inverse DWT is 
computed to build the denoised signal. 
Further peak detection parameters are also employed in or-
der to discard impulsive noise and some oscillations from 
the signal envelope. Prominence is calculated as shown in 
(1) and compared to a minimum threshold. This removes 
small impulsive noise by only selecting the main peaks in 
the envelope. The prominence of a peak represents how 
much the peak stands out considering its height and its po-
sition relative to other peaks. For each peak, the valleys be-
tween it and a higher peak (or the end of the signal if there 
are not higher peaks) are found at both sides. Afterwards, 
the minimum valley is estimated at each side and the refer-
ence level is set as the highest valley between the two. Fi-
nally, the peak prominence is specified by the height of the 

peak above this reference level. While PDs are commonly 
the main or prominent peaks, impulsive noise detected as 
peaks will be discarded because it will not exceed minimum 
peak prominence percentage. 

 

ሺ%ሻ݁ܿ݊݁݊݅݉݋ݎ݌ ൌ
௣௘௔௞	௣௥௢௠௜௡௘௡௖௘

௣௘௔௞	௔௠௣௟௜௧௨ௗ௘
൉ 100. (1) 

 
When reflections in the MV system produce oscillating sig-
nals, multiple uniform peaks are generated very close to 
one another and translates to a single, very wide peak in the 
signal envelope. If a maximum peak width is established 
(around 312 ns), as illustrated in Figure 3, these kinds of 
oscillations can be discarded. 

 
Fig. 3.  Rejection of high frequency oscillations caused by re-

flections with max. peak width 
 

Other types of oscillations have also been found, produced 
by very high amplitude PDs. These oscillations might af-
fect PD detection in two different ways. Oscillations may 
modify the waveform of successive PDs and/or big oscilla-
tions may also be detected as PD peaks. Both effects can be 
seen in Figure 4.  

 
Fig. 4.  Rejection of low frequency oscillations caused by very 

high amplitude PDs with threshold 
 

To solve this, a threshold has been established that detects 
these kinds of very high amplitude peaks. When a peak ex-
ceeds this threshold, only that peak is taken into account in 
that window (2048 samples), whereas the rest of the peaks 
are discarded. Hence, although the number of detected 
peaks decreases, this filter does not change the results sig-
nificantly. 
Lastly, a tunable notch filter has been implemented to re-
move other RF interference signals. First of all, the FFT 
(Fast Fourier Transform) and the normalized frequency 
spectrum of the window are obtained. In the low frequency 
range (below 10 MHz), sharp dominant frequencies are de-
tected and the centre frequency of the notch filter is tuned 
according to these dominant frequencies in order to elimi-
nate them.  Figure 5 represents the original signal with its 
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frequency spectrum and Figure 6 illustrates the filtered sig-
nal, free of oscillations with its frequency spectrum, free of 
dominant frequencies.  

 
Fig. 5.  Original signal with its frequency spectrum 

 

 
Fig. 6.  Filtered signal, free of oscillations; with its fre-

quency spectrum,  
 
2.2. PD detection 
 
After a PD has been detected, it is necessary to determine 
its start and end point. With these reference points it is then 
possible to isolate the PD from the rest of the signal. In or-
der to find those points, the Energy Criterion (EC) method 
is employed [7].  Each sample in the EC signal is defined 
as: 
 

ሺ݊ሻܥܧ ൌ 	∑ ሺ݅ሻଶ௡ݔ
௜ୀଵ െ

௡

ே
൉ ∑ ሺ݅ሻଶேݔ

௜ୀଵ , (2) 

 
where n ranges from 1 to N and N is the number of samples 
in a window (2048 in this case). With this EC signal, big 
amplitude changes produced in the original signal can be 
detected. Using this information, the starting point of the 
PD is defined as the minimum point of the EC signal, 
whereas the end is defined as the point where the gradient 
of the EC signal starts to be negative and continuous (Fig-
ure 7). 

Fig. 7.  PD start and end point estimation with EC signal 
 

 

3. DEFECT PATTERN GENERATION 
 
Once all the PDs have been detected and isolated, the gen-
eration of a representative model is needed so that a suc-
cessful PD classification can take place. The classification 
stage will correlate the representative model of an analyzed 
capture with the patterns of all PD types. It is for this reason 
that these patterns need to be generated beforehand. Every 
single pattern is created taking into account the representa-
tive models of all captures of the same PD or defect type. 
These model PDs are generated in a controlled laboratory 
and stored in a PD database. 
In this case, an Average Charge (%) versus Phase Window 
(º) (ACPW) diagram is used as the aforementioned repre-
sentative model. The ACPW diagram is computed for each 
capture, where the 50 Hz frequency power signal is used 
for phase estimation of PDs detected in the high-frequency 
signal. The phase is divided in ten windows of 36º and the 
percentage of the total charge for each window is com-
puted. An example of this diagram has been illustrated in 
Figure 8.  
 

 
Fig. 8. ACPW diagram of a single capture 

 
By combining the ACPW diagrams of various PD signals 
obtained from the same type of defect, the maximum and 
minimum average charge for each phase window is com-
puted. These will represent the ranges of the pattern of 
that defect type, as it can be seen in Figure 9. 

 
Fig. 9.  ACPW diagram of a pattern 

 
4 DEFECT SEPARATION 

 
It is possible that more than one defect is present in the 
same MV system. Thus, many PD types could be mani-
fested in the same capture. To separate them correctly, 
Wavelet Energy Levels are computed for each detected PD. 
Commonly, energy levels are estimated from standard 
DWT. However, a static bandwidth is set with this trans-
form (each level has the half of the bandwidth of the previ-
ous level). In consequence, it has been found that in some 
cases two different PD types may have very similar wavelet 
energy levels, although the PD waveform and frequency 
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spectrum is different. Figure 10 shows two PD types and 
Figure 11 illustrates their respective energy levels. As we 
can see from this example, even if the PDs are completely 
different, their associated wavelet energy levels are almost 
identical. This may lead to errors in the PD separation pro-
cess. 

 
 Fig. 10.  PDs generated by defects 1 and 2. 

 

 
Fig. 11.  Energy levels of the PDs generated by defects 1 and 2. 

 
As it has been proved that energy levels with dynamic or 
flexible bandwidth improve results and increase their vari-
ability, the Laguerre Transform [8] has been employed to 
define 8 energy levels (between 0-40 MHz), each with 5 
MHz bandwidth. As a result, energy levels become more 
variable and this enables the algorithm to separate defect 
types easier. Thanks to this transform, the frequency spec-
trum of every PD is mapped conveniently with (3) and (4) 
where wୡ is the desired center frequency. 
 

θሺwሻ ൌ w ൅ 2 ൉ arctan ቀ
ୠ൉ୱ୧୬ሺ୵ሻ

ଵିୠ൉ୡ୭ୱሺ୵ሻ
ቁ 				െ 1 ൏ ܾ	 ൏ 1. (3) 

bሺwୡሻ ൌ tan ቀ
஠

ସ
െ

୵ౙ

ଶ
ቁ .	(4) 

 
Nevertheless, the Laguerre Transform is not energy con-
serving. Hence, in order to obtain a new energy conserving 
spectrum	θሺwሻୣୱୡ., a scaling step is required, which is car-
ried out with (5) and (6).  
 

	θሺwሻୣୱୡ. ൌ ඥߠሺݓሻᇱ ൉ θሺwሻ.		(5) 

ඥߠሺݓሻ′ ൌ
ଵି௕మ

ଵିଶ൉௕∗ୡ୭ୱሺ௪ሻା௕మ
ൌ

ඥଵି௕మ

ଵି௕൉௘షೕ൉ೢ
.	(6) 

 
To conclude, energy levels are calculated with a standard 
DWT of the modified signal.  Figure 12 illustrates the new 
energy levels of the previous two PD types after the appli-
cation of the Laguerre Transform. As shown in this figure, 
the wavelet energy levels of both PD types are different and 
can now be successfully separated. 
Once the energy levels of all PDs in a capture have been 
computed, the most representative energy levels have to be 
selected (the ones with highest variability). This dimen-
sionality reduction is achieved by means of the principal 
component analysis (PCA) algorithm [9].  By selecting the 
three most significant energy levels, the PDs can be 

mapped into a 3D space and, therefore, different PD types 
can be visually separated as represented in Figure 13. 
 

 
Fig. 12.  Energy levels of the PDs generated by defects 1 and 2 

after the Laguerre Transform 
 

 
Fig. 13.  3D PCA space of a three PD type capture 

 
Although different PD groups can be visually distin-
guished, this process needs to be automated by means of a 
clustering algorithm. This is achieved with the OPTICS 
(Ordering Points To Identify the Clustering Structure) al-
gorithm [10]. For that, a reachability plot is used, where 
each cluster or group is represented as a valley, as illus-
trated in Figure 14. The results of the PD clustering process 
are shown in Figure 15. 

 
Fig. 14.  Reachability plot of the previous 3D PCA Space 

 

 
Fig. 15. PD type separation by OPTICS in the 3D PCA Space 
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5. PD CLASSIFICATION 
 
Once the different PD clusters have been defined, each PD 
type has to be identified. This classification process is car-
ried out by means of the extension set theory [11]. In order 
to do this, each PD cluster's ACPW diagram (i) is correlated 
with the pattern diagrams saved in the database (j) [12]. The 
correlation result ܭ௜௝ (7-9) is estimated with points f and g 
defined from points a (range minimum) and b (range max-
imum), where X0 = [a,b] and X= [f,g] and f=0,8a and 
g=1.2b.  

 

ሻݔ௜௝ሺܭ			 ൌ ቐ

ିଶ൉௣ሺ௫,௑బሻ

௕ି௔
	ݔ																						, ∈ ܺ଴	

௣ሺ௫,௑బሻ

௣ሺ௫,௑ሻି௣ሺ௫,௑బሻ
ݔ												, ∈ ܺ଴

. (7) 

 

,ݔሺ݌ ܺ଴ሻ ൌ ቚݔ െ
௔ା௕

ଶ
ቚ െ

௕ି௔

ଶ
.	(8) 

 

,ݔሺ݌ ܺሻ ൌ ቚݔ െ
௙ା௚

ଶ
ቚ െ

௚ି୤

ଶ
. (9) 

 
 

6. RESULTS 
 
Satisfactory results have been achieved with different volt-
ages (10 kV, 20 kV and 30 kV) and in various environ-
ments. Up to six PD type signals generated on a MV distri-
bution network (sourced from defective installation, such 
as a missing busbar end-plug or disconnected earth braid) 
have been employed. The algorithm has been tested in a 
triphasic environment, although it can also be used in mo-
nophasic systems.  
Regarding the working voltage of the MV system, it has 
been observed that the algorithm works better when high 
voltages are employed, as the number of PDs increases in 
these cases. Table 1 represents the effectiveness percentage 
of the algorithm. 
 

 Effectiveness percentage 
Single PD type 100% 
Multiple PD types 72.5% 

Table 1. Final results statistics 
 
The algorithm has classified successfully single PD type 
captures in 100% of the cases. However, the effectiveness 
with captures having multiple PD types has been of 72.5%. 
The lower effectiveness of the algorithm in multi-defect 
scenarios is due to a wide variation in PD repetition rates 
of the different PD types. This PD number imbalance hin-
ders the PD clustering process by identifying a single PD 
cluster instead of two. This leads to just a single defect type 
being identified correctly. This outcome has been consid-
ered as an erroneous output of the algorithm when calculat-
ing the effectiveness ratio in Table 1. However, it is possi-
ble to correct the first detected defect and then run the al-
gorithm again. In this case, the second defect (which gen-
erates a small number of PDs) can be successfully identi-
fied. This way, effectiveness ratio of the algorithm would 
increase up to 88% in the identification of multiple defects.  
 

7. CONCLUSIONS 
 
This paper has presented an innovative defect detection and 
classification system. Unlike other algorithms found in the 
literature, the proposed PD detection and classification sys-
tem has been tested in a real environment where a variety 
of artifacts are present. The algorithm requires minimum 
training (just the generation of the defect patterns) and has 
been proven to work correctly in both monophasic and tri-
phasic environments. It provides a good solution to on-line 
PD detection and classification in MV systems. 
 

ACKNOWLEDGMENT 
This work was supported by the Spanish Government 
(Ministerio de Economía y Competitividad) under the pro-
ject RTC-2014-1713-3 OPTIMUS. 
 

REFERENCES 
 

[1] C. Heitz, "A generalized model for partial discharge pro-
cesses based on a stochastic process approach", Journal of 
Physics D: Applied Physics 32(9), pp. 1012–1023, 1999.  

[2] Li, X., "Fuzzy self-organizing maps for detection of partial 
discharge signals,'' In Proceedings of IEEE/ASME interna-
tional conference on advanced intelligent mechatronics, pp. 
1683–1688, 2009. 

[3] Chen, H. C., Gu, F. C., & Wang, M. H., “A novel extension 
neural network based partial discharge pattern recognition 
method for high-voltage power apparatus”, Expert Systems 
with Applications, 39(3), pp. 3423-3431, 2012. 

[4] Chang, W. Y. “Partial Discharge Pattern Recognition of Cast 
Resin Current Transformers Using Radial Basis Function 
Neural Network”, Journal of Electrical Engineering & Tech-
nology, 9(1), pp. 293-300, 2014. 

[5] Pradhan, A. K., “Analysis of partial discharge signals using 
digital signal processing techniques”, National Institute of 
Technology Roukela, 2012. 

[6] Hao, L et al., “Discrimination of Multiple PD Sources Using 
Wavelet”, s.1.. IEEE, 2011 

[7] Wagenaars, P., “Integration of Online Partial Discharge 
Monitoring and Defect Location in Medium-Voltage Cable 
Networks”, Eindhoven University of Technology, pp. 74-75, 
2010. 

[8] Evangelista, G., “Flexible Wavelets for Music Signal Pro-
cessing”, Journal of New Music Research, 30(1), pp. 13–22, 
2001. 

[9] Moore, B., “Principal component analysis in linear systems: 
Controllability, observability and model reduction”, Auto-
matic Control, IEEE Transactions on, 26(1), 2003. 

[10] Ankerst, M., Breunig, M. M., Kriegel, H.-P. & Sander, J., 
“OPTICS: Ordering Points To Identify the Clustering Struc-
ture”, University of Munich, 2004. 

[11] Ho, C.-Y., Wang , M.-H., “Application of Extension Theory 
to PD Pattern Recognition in High-Voltage Current Trans-
formers”, 2005. 

[12] Gu, F.-C., M.-H. Wang & Chen, H.-C., “A novel extension 
neural network based partial discharge pattern recognition 
method for high-voltage power aparatus”, ScienceDirect, 
2012. 

2016 24th European Signal Processing Conference (EUSIPCO)

1437


