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Abstract—This paper presents the first hardware architecture
for compressing and reconstructing correlated neural signals
using structure-based inpainting. This novel methodology is es-
pecially important for the realization of implantable neural mea-
surement systems (NMS), which are subject to strict constraints
in terms of area and energy consumption. Such an implant only
requires a defined controlling of the electrode activity to compress
neural data. To achieve an efficient implementation with high
throughput at the data recovery, approximately computation
of arithmetic operations and elementary functions is proposed
by using the logarithmic number system (LNS). Because of the
digital quantization effects of the LNS conversions, an inherent
thresholding operation arises. The proposed hardware realization
significantly reduces the required iteration of inpainting com-
putations. This inherent zero forcing in conjunction with the
algorithmic error correction results in a speed-up in terms of
neural signal recovery, which results in a throughput of 32 961
parallel reconstructions per second.

I. INTRODUCTION AND RELATED WORK

Long term recording of brain activity is utilized in several
fields of research and medical diagnostics like the detection
of epileptic seizures [1] or controlling prosthetics [2]. In
order to constantly monitor the brain activity, implantable
systems are getting more and more important. In contrast to
traditional measurement equipment, these implants achieve a
higher spatial resolution by placing the multi electrode array
(MEA) directly on the brain surface. By removing all physical
connections through the skull, wireless communication elimi-
nates the risk of an infection and enables remote diagnostics
during everyday life of the patient.

The wireless energy supply results in a tight energy con-
straint for the implant. Transceivers for this highly constrained
environment approved for bio-medical applications do not pro-
vide enough bandwith to cope with the amount of information
generated by a MEA of up to 100 [3] and even 1000 [4]
electrodes, which range into several Mbit/s.

To alleviate this problem, compression techniques are a
welcome approach at the implant. Data recovery at the external
receiver (ex vivo) provides accurate approximations of the
original neural signals. Standard methods, like JPEG [5], are
unfeasible due to their high algorithmic complexity leading
to an unacceptable energy and area consumption. However,
more suited compression methods, like Compressed Sensing
(CS) [6] or inpainting [7], have proven to be very feasible in
this scope. The latter has been shown to outperform CS, e.g.

Skull

Skin

Multi Electrode Array

Implant/Chip
OCompressionNResource-limited

System

PC/GUI

Base
Station

Data
Recovery
Oe.g. FPGAN

in vivo

ex vivo

In
d
u
ct
.
Li
n
k

D
at
a

Mobile Device

Original Neural Signals

Masked/Compressed Data

Recovered Neural Signals

x-axis: time sample
y-axis: electrodes

Transmission of this
reduced data set (black=0)

Fig. 1. Schematical design of the inpainting-based compression and recon-
struction methodology for brain monitoring. The process of compressing
the original neural signals due to the inpainting mask on implant and
reconstructing the brain activity e.g. on a FPGA.

in terms of signal recovery quality (see tab. I). These meth-
ods also offers the opportunity of computational complexity
reduction (CR) [7]. Therefore, it can be implemented within
the highly constraint environment of neurological implants
because of their low computational load.

This paper presents the hardware architecture of the data
reconstruction method using structure-based inpainting [8],
which is able to exploit correlation (EC) of neural signals. This
novel compression and reconstruction methodology [7], [9],
schematical shown in fig. 1, is based on spatial inter-electrode
correlation of the neural signals [10]. These signals exhibit
an image-related structure, which can be optionally enhanced
by correlation-based sorting [7]. The major key of this new
data compression technique is the inpainting mask, which
corresponds to an electrode activity controller to manage the
recording behavior of the MEA [7]. It switches specified
electrodes on and off for several time (and spatial) parts of the
neural activity recording, as shown in fig. 1. This results in a
data compression, as only the remaining signal fragments have
to be transmitted. To constantly monitor the brain activity a
high performance hardware architecture for data reconstruction
is introduced that uses the logarithmic number system (LNS)
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TABLE I
ERROR, COMPRESSION RATIO, PROPERTY OF COMPUTATIONAL

COMPLEXITY REDUCTION AND EXPLOITATION OF SIGNAL CORRELATION
OF RECOVERED NEURAL DATA ARE ILLUSTRATED, MODIFIED FROM [7].

Approach NMSE σNMSE η in % CR EC

Inpainting 0.078 ±0.012 62 Yes Yes
CS 0.170 ±0.037 62 Yes No

JPEG 0.017 ±0.003 78 No Yes

[11] for nontrivial function computation. Its major advantage
refers to the simplification of several arithmetic operations and
elementary functions by processing the corresponding expo-
nential concatenations. Hence, logarithmic (LOG) and anti-
logarithmic (ALOG) converters are implemented for number
system transformation between LNS and fixed-point number
system (FPNS). In order to minimize the processing time and
the hardware complexity on the target FPGA, high perfor-
mance function approximation techniques are considered.

II. NEURAL INPAINTING PROCESSING

The neural raw signals applied in this paper were recorded
invasively from the human brain of a male patient by M elec-
trodes of a surface MEA at the Epilepsy Centre of Erlangen
(EZE) [12]. Here, local field potentials (LFP) are utilized,
which are sampled at fS = 1024 Hz by a resolution of 16 bits.
Typically, N time samples long data blocks in form of a matrix
A ∈ RM×N are utilized in the inpainting processing [7].

The major key of the recent inpainting-based data compres-
sion technique is the logical matrix Ω ∈ {0, 1}M×N , which
controls the recording behavior of the MEA [7]. Therefore,
logical ones denote the recorded parts of the neural activity
in time and spatial domain, respectively. All logical zeros in
Ω remark the constellation of deactivated electrodes, which
regularized the data reduction. Hence, a compression ratio
η = 100%(1 − |Ω|/(MN)) can be defined, where the
cardinality | · | of the mask Ω corresponds to the number
of retained components of the neural signal recording. The
data transmission on implant side comprises only these re-
duced signal parts. In order to relocate the received signal
fragments to the original time and spatial positions in the
matrix A(Ω) ∈ RM×N , the mask has to be known for the
data recovery procedure.

The structure-based inpainting algorithm [8] is an iterative
method 1 ≤ t ≤ Tmax, which composes the fundament of
the isophotes-focused reconstruction of the correlated neural
signals. Isophotes are lines of equal magnitude values, which
serve as information in the recovery procedure and arrive at
the boundary of the masked parts in A(Ω). Optionally, in
order to increase the spatial correlation between the neural
signals a electrode-based rearrangement [7] can be applied as
a calibration step and to choose a suitable mask Ω.

The inpainting recovery alternates between Bmax anisotropic
diffusion D, which acts as a smoothing operator, and Amax
recursive update computations,

Aa+1(Ω(i, j)) = Aa(Ω(i, j)) + ∆u ·Aa
u(Ω(i, j)), (1)

in order to recover the missing parts of the signal array A(Ω).
In eq. (1) the exponent a ∈ {1, . . . , Amax} indicates the
iterative recovery computation, the parameter ∆u the update
step size and the arguments i and j the vertical and horizontal
coordinates in the zero-marked parts of Ω, respectively. By
calculating the gradient G (in general, central difference:
Gi = A(i + 1, j) −A(i − 1, j)) and Laplacian Li (standard
kernel: L = A(i+ 1, j) +A(i−1, j) +A(i, j+ 1) +A(i, j−
1)− 4A(i, j)) operators for the vector projection

β(i, j) =
1√
G2i + G2j

· 〈
(
−Gj
+Gi

)
,

(
Li+1 − Li−1

Lj+1 − Lj−1

)
〉 (2)

the update term Au(Ω(i, j)) = β(i, j) · |∇A(i, j)| can detect
and further recover isophotes in the masked neural array
A(Ω), while the so called slope limiter

|∇A(i, j)| =


√
G2ibm + G2ifM + G2jbm + G2jfM β > 0√
G2ibM + G2ifm + G2jbM + G2jfm β < 0

(3)

ensures the stability of the structure-based inpainting algo-
rithm. In contrast to (2), the gradients in (3) are implemented
as forward and backward differences labeled by the indices
b and f for the coordinates i and j, respectively. The letter
indices m and capital M denote the minimum and maximum
of the backward or forward differences to zero value.

After Amax recursive update computations Au(Ω), Bmax
anisotropic diffusions D are applied to the masked part of
the neural array A(Ω) in order to fill and smooth the result
of the inpainting recovery. Therefore, appropriate smoothing
operators could be exponential or fractional functions [13]:

De(A(Ω(i, j))) =
∑
u,v

pu,v · e−(pu,v/K)2 , (4)

Df (A(Ω(i, j))) =
∑
u,v

pu,v/(1 + (pu,v/K)2), (5)

where the partial differences are defined by the following
expression: pu,v = A(Ω(i + u, j + v)) − A(Ω(i, j)), here,
all combinations of {u, v} ∈ {−1, 0,+1} have to be inserted,
under the prerequisite that u 6= v holds. Of course, such
nontrivial functions like (2) and (3) as well as (4) or (5) are
difficult to implement into hardware. Therefore, the logarith-
mic number system (LNS) approach is applied to this work in
order to design a high performance hardware architecture for
inpainting recovery computation.

III. IMPLEMENTATION

A. Number Format Transformation

As described in sec. II, nontrivial numeric functions are
calculated in the LNS that decrease the signal processing effort
evidently. Therefore, LOG and ALOG converter modules are
required realizing the number format transformation. For an
efficient realization of the elementary functions in (2), (3) and
(4) as well as the arithmethic operation in (5), an automated
piecewise linear function approximation method is proposed.
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Fig. 2. Hardware structure for the conversion from FPNS to LNS.

This technique is about imitating the slope of a given original
function by linear equations which are easy to compute by
digital architectures [14]. Though, this will reduce the path
delay and the latency, this technique also leads to small
calculation errors. However, in the scope of (the comparatively
low-precision) application-specific fixed-point computations,
this method has proven to achieve good-enough results (e.g.,
[15]). By using a piecewise function approximation technique,
the function will be split up into several pieces of sub-
functions, so-called segments. Thus, finding an optimal trade-
off between hardware performance and calculation error is one
of the main goals of function approximation hardware design.
In general, linear equations are described by f̃(x) = c1 ·x+c0,
where x denotes the input data, f̃(x) the approximation of the
original function f(x) and c1 and c0 the gradient and offset,
respectively. In order to realize a non-uniform segmentation
scheme, the original function is split up into several sub-
functions of variable input range each. Quick access to a sub-
function is enabled by a restricted segmentation scheme. Each
segment must fulfill the constraint

seg(i) = seg(i− 1) +
Cstart − Cend

2hi
, (6)

with Cstart, Cend as start and end point of the function, seg as
sub-function start point, i as segment index (seg(0) = Cstart)
and hi ∈ N+ as the interval exponent of the ith segment.
Note, that hi may differ for each segment which may cause
a varying number of MSB that must be considered for each
segment. The input range of the original function is set to
Cend−Cstart = 2hk , with k as number of all segments. Hence,
the sub-function selection can be carried out by taking only the
most significant bits (MSB) of the input value x into account.
Thus, the approximation is expressible

f̃(x) = (c1 · x + c0) · κ(x) (7)

with c1 and c0 as the vector of gradients and offsets, respec-
tively, and κ as the blanking function realizing the mapping of
the linear equation to corresponding segments (see also [15]).

In order to leverage the segmentation and, consequently,
minimize the calculation error, an automated accuracy-driven
scheme is used. By the utilization of Remez-Algorithm, best-
case approximations are achieved, minimizing the maximum
error ε̃ [14]. Hence, function approximation are generated
(starting with the entire range of the original function) and ε̃ is
compared to a specified error constraint εmax. If the constraint
is not met (ε̃ > εmax), bisection is performed and the heuristic
starts over in the leftmost segment. Otherwise, if ε̃ ≤ εmax

is fulfilled, all coefficients and segment data are stored and
the next segment to the right is taken into account. When
the entire function has been processed this way, the stored
parameters are mapped onto hardware using a corresponding
VHDL-StringTemplate [16]. A more sophisticated description
of this method (except for the multiplier-less design technique)
can be found in [15]. An overview of the general hardware
structure is given in fig. 2.

IV. THE LOGARITHMIC NUMBER FORMAT

In order to reduce the signal processing effort, e.g., of the
smoothing functions given in (4) and (5), LNS-based calcula-
tion is taken into account. In general, this technique is used
to simplify numeric operations and/or elementary functions
by processing the exponential equivalents of the operands
[11]. As the trivial arithmetic addition and subtraction cannot
be performed in the LNS, number format transformation are
utilized in this paper to switch between the LNS and the
(ordinary) fixed-point number system (FPNS). According to
[17], a value VLNS in the LNS can be expressed as

VLNS = (1− z) · (−1)s · 2−e · 2l , (8)

with s, z as the sign and zero bit, e as the exponent and l as
the logarithmic mantissa. Note, that the LNS is very similar
to the floating-point number system except for the logarithmic
expression of the mantissa. In contrast to this, the VFPNS of
the FPNS is usually defined as

VFPNS = (−1)s · o · 2−r , (9)

where s is the sign bit, o the value offset and r the radix
point. The logarithmic (LOG) and anti-logarithmic (ALOG)
mantissa transformation are expressed by

L = log2(On + 1); On = O · 2e; 0 ≤ On < 1 , (10)

O = 1 + (2Ln − 1); Ln = L · e; 0 ≤ Ln < 1 , (11)

with On and Ln as the normalized values shifted by 2e.
Thus, the transformation requires the calculation of (non-
linear) elementary functions which is realized in this paper
by the use of piece-wise linear function approximation (sec.
III-A), as this approach has proven to be a powerful solution
in many application areas, e.g., mobile communication [15].

A. LNS-based signal processing optimizations

In oder to simplify arithmetic operations and elementary
functions, the LNS is established to realize a high performance
hardware architecture. For the hardware implementation per-
spective, the LNS approach replaces multi-digit multiplication
like uv by table look-ups and simpler addition because of the
fact that the logarithm of a product is the sum of the logarithms
of the factors loga(uv) = loga(u) + loga(v).

Fig. 2 presents the used LNS converter circuit in order to
determine nontrivial mathematical expressions. This converter
consists of two LUTs for the coefficient sets {c0, c1} ∈ Rk,
a multiplexer (MUX) controlled by the MSB of the input
x and a single multiplier as well as adder to obtain the
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Fig. 3. Schematical FSM of one path of the parallel inpainting-based recovery
computation including a global data updating in each iteration.

corresponding LNS output. As a result, the nontrivial functions
of the inpainting recovery algorithm can be implemented into
HDL as follows

u1

√
u2
u3

log2−→ log2(u1) +
log2(u2)

2
− log2(u3)

2
(12)

for the update term β(i, j) · |∇A(i, j)| in the eq. (2) and (3)
as well as the two different variants of the ansitropic diffusion
D operations in eq. (4) and (5)

De : u1e
−u2

2
log2−→ log2(u1)− u22 log2(e), (13)

Df :
u1

1 + u22

log2−→ log2(u1)− log2(1 + u22), (14)

whereby only one diffusion is necessary [8], [13]. Exploiting
the LNS, the nontrivial functions in the hardware architecture
exhibit only simple structures as MUX, multiplier, adders and
LUTs for constant factors.

B. Hardware architecture

The hardware architecture for the inpainting-based recovery
is realized by a FSM using normalized neural input data A ∈
[0, 1]M×N in FPNS format. The FSM is separable into three
superordinate parts as shown in fig. 3. The depicted data path
is one schematically branch of a parallel implementation with
global data updating unit, which allocate the computed data to
the next calculation cycle (just wiring). A single reconstruction
branch requires 13 input sample inside and around the mask
Ω in order to determine e.g. the gradient G and Laplacian L.

After an initial anisotropic diffusion D and data updating,
the detection and completion of the isophotes in A(Ω) are
computed by the proposed LNS-based realization of the nor-
malized gradient (2) and the slope limiter (3). For D, the
argument pu,v/K is calculated in LNS, before the exponential
function in eq. (4) is computed in FPNS as a multiplication
of the negative argument and log2(e), while the fractional
function in eq. (5) needs to be realized in LNS by inverting the
sign after adding a one in FPNS. All counter are used to ensure
that the described alternating procedure of the inpainting-based
recovery is executed Tmax(Amax +Bmax) times.

V. RESULTS

The hardware architecture evaluation of the here proposed
inpainting-based compression and reconstruction approach for
correlated neural signals are shown in the following. All simu-
lation results include neural raw data. Each array A ∈ RM×N

used in this work consists M = 48 different electrode and

TABLE II
USED EVALUATION PARAMETERS TO RECOVER NEURAL SIGNALS.

η in % Tmax Amax Bmax ∆u K

62 50 15 5 0.1 0.25

N = 128 time samples. Comparable to fig. 1, a logical mask
Ω ∈ {0, 1}M×N in form of a regular grid of several 6 × 6
patches is applied. In order to achieve a compression ratio of
η ≈ 62% the mask comprises a vertical and horizontal spacing
of only 3 samples between the patches. The reconstruction
results presented in this work are based on a large amount of
neural signals and the inpainting parameters shown in tab. II.

In order to assess the capability of the inpainting algorithm,
the normalized mean squared error (NMSE)

NMSE =
‖A(Ω)− Â(Ω)‖F

‖A(Ω)‖F
(15)

is computed, where A(Ω) stands for the original array and
Â(Ω) marks the recovery result. The letter F in expression
‖ · ‖F in eq. (15) denotes the Frobenius norm.

Several function approximations of the non-linear functions
in the LOG and ALOG converter modules with a varying error
constraint are generated (see tab. III). Note, that the size of
the datapath is always two higher than the specified error (e.g.
for εmax = 2−12, an datapath width of 14 is considered).

A. Algorithmic performance

Fig. 4 shows the mean NMSE and convergence behavior of
the inpainting-based reconstruction depending on the iteration
t, which includes the alternating procedures of computation
of the update Au(Ω) and the anisotropic diffusion D. The
comparison of the different implementations of the anisotropic
diffusion in MATLAB, both double and fixed-point format
is illustrated in fig. 4(a) and 4(b), respectively. As described
above, the exponential De and fractional function Df are
analyzed regarding error and convergence for the inpainting
smoothing operation. While the double format realization
requires a large amount of iterations t in order to adequately
reconstruct the correlated neural signals, the fixed-point imple-
mentation achieves a suitable and stable error value after only
a few iterations t. This gainful phenomena can be explained
by quantization effects of the conversions into the LNS and
back to FPNS, which acts as a inherent thresholding operation.
Therefore, this implementation forces values less and more im-
portant greater than a defined range to zero. This demonstrates
that the proposed inpainting algorithm still has room with
respect to the reconstruction procedure in terms of quality and
speed. In this evaluation, the anisotropic diffusion performed
by the fractional function Df reaches both a faster convergence
and a higher remaining NMSE during the inpainting recovery.

Fig. 4(c) illustrates the reconstruction quality enhancement
depending on the selected quantization level. The increment
of the word size within the proposed hardware architecture
based on LNS leads to an improvement in terms of NMSE.
Depending on the application and type of medical diagnostics,
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TABLE III
OVERVIEW OF THE INVESTIGATED FUNCTION APPROXIMATIONS FOR THE

LOG AND ALOG HARDWARE MODULES WITH VARYING εmax .

εmax 2−12 2−14 2−16 2−18 2−20

kLOG 23 43 86 174 341

kALOG 25 51 102 205 415

TABLE IV
ESTIMATED SYNTHESIS RESULTS REGARDING VIRTEX-5 XC5VFX200T.

Module Used Available Utilization
Number of Slices Regs 10094 122880 8 %

Number of Slice LUTs 23440 122880 19 %

Number of LUT-FF pairs 5652 27882 20 %

Number of DSPs 171 384 44 %

a resolution of equal or greater than 16 bits is recommended
in order to design an efficient architecture with regard to
accuracy, speed and hardware issues (area, energy, etc.). This
resolution correspondences to a NMSE less than 0.8, which is
consistent with the results of tab. I.

B. FPGA-specific evaluation

The synthesis results given in this paper were applied to
a Xilinx Virtex-5 xc5vfx200t FPGA, shown in tab. IV. The
non-optimized hardware implementation reaches a target clock
frequency of 79.107 MHz. The proposed architecture achieves
a throughput of 32 961 parallel inpainting recoveries (3 × 3
patches in Ω and Tmax = 15) per second based on 16 Bits.
With this advantage, the large amount of recorded neural data
can be analyzed by medical scientists in time.

VI. CONCLUSION

The first hardware reconstruction architecture for neuro-
logical multichannel signals compressed by inpainting-based
mask is proposed. A high throughput implementation of the
nontrivial computations required for the recovery is achieved
by utilizing the logarithmic number system with non-uniform
piecewise linear approximation. This increases the recovered
signal quality and computation speed with only negligible
error. Compared to a MATLAB double implementation the
proposed architecture generates results with at least similar
accuracy while the iterative-based computations are dramat-
ically reduced because of an inherent zero forcing by LNS
conversion and error correction behavior of the structure-based
inpainting algorithm.

REFERENCES

[1] R. Meier, H. Dittrich, A. Schulze-Bonhage, and A. Aertsen, “Detecting
epileptic seizures in long-term human eeg: A new approach to automatic
online and real-time detection and classification of polymorphic seizure
patterns,” Journal of Clinical Neurophysiology, vol. 25, no. 3, 2008.

[2] P. Shenoy, K. Miller, J. Ojemann, and R. Rao, “Generalized features for
electrocorticographic bcis,” Biomedical Engineering, IEEE Transactions
on, vol. 55, Jan 2008.

[3] J. Pistor, J. Hoeffmann, D. Rotermund, and E. T. et al., “Development
of a fully implantable recording system for ECoG signals,” in Design,
Automation & Test in Europe Conference & Exhibition (DATE), 2013.

0 2k 4k 6k 8k 10k
0

0.2

0.4

0.6

Iteration t

N
M
S
E

De

Df

(a) Double format.

0 10 20 30 40 50
0

0.2

0.4

0.6

Iteration t

N
M
S
E

De

Df

(b) Fixed-point format.

0 5 10 15 20 25 30 35 40 45 50
0.05

0.10

0.15

0.20

0.25

Iteration t

N
M
S
E

12Bit 14Bit 16Bit 18Bit 20Bit

(c) Fixed-point format. Quantization effect regarding inpainting by Df .

Fig. 4. Mean error and convergence behavior of inpainting recovery for
correlated neural signals as a function of the iteration t. Comparison of
exponential De and fractional anisotropic diffusion Df using MATLAB
double (a) and fixed-point format (b), respectively. A significant reduction of
required iteration t for similar recovery quality can be observed. Furthermore,
in (c) an enhanced signal quality can be obtained by increasing the resolution.

[4] K. Wise, D. Anderson, J. Hetke, D. Kipke, and K. Najafi, “Wireless im-
plantable microsystems: high-density electronic interfaces to the nervous
system,” Proceedings of the IEEE, jan 2004.

[5] G. K. Wallace, “The JPEG still picture compression standard,” Commun.
ACM, vol. 34, no. 4, pp. 30–44, apr 1991.

[6] E. Candes, J. Romberg, and T. Tao, “Robust uncertainty principles: exact
signal reconstruction from highly incomplete frequency information,”
Information Theory, IEEE Transactions on, 2006.

[7] S. Schmale, B. Knoop, D. Peters-Drolshagen, and S. Paul, “Structure
reconstruction of correlated neural signals based on inpainting for brain
monitoring,” in Biomedical Circuits and Systems Conference (BioCAS),
2015 IEEE, Oct 2015, pp. 1–4.

[8] M. Bertalmio, G. Sapiro, V. Caselles, and C. Ballester, “Image in-
painting,” in Proceedings of the 27th Annual Conference on Computer
Graphics and Interactive Techniques, ser. SIGGRAPH ’00, 2000.

[9] S. Schmale, H. Lange, B. Knoop, D. Peters-Drolshagen, and S. Paul,
“Compression and reconstruction methodology for neural signals based
on patch ordering inpainting for brain monitoring,” 41st IEEE Interna-
tional Conference on Acoustics, Speech and Signal Processing (ICASSP
2016), mar 2016, (accepted).

[10] S. Schmale, J. Hoeffmann, B. Knoop, G. Kreiselmeyer, H. Hamer,
D. Peters-Drolshagen, and S. Paul, “Exploiting correlation in neural
signals for data compression,” 22nd European Signal Processing Con-
ference (EUSIPCO 2014), sep 2014.

[11] J. N. Mitchell, “Computer Multiplication and Division Using Binary
Logarithms,” IRE Transactions on Electronic Computers, Aug. 1962.

[12] Epilepsy Centre Erlangen (EZE), Germany, “Data of the Epilepsy
Centre,” 2013, http://www.epilepsiezentrum.uk-erlangen.de/.

[13] P. Perona and J. Malik, “Scale-space and edge detection using
anisotropic diffusion,” Pattern Analysis and Machine Intelligence, IEEE
Transactions on, Jul 1990.

[14] J.-M. Muller, Elementary functions : Algorithms and Implementation,
2nd ed. Birkhaeuser Boston, 2006.

[15] J. Rust, F. Ludwig, and S. Paul, “Low Complexity QR-Decomposition
Architecture Using the Logarithmic Number System,” in Design, Au-
tomation and Test in Europe Conference and Exhibition (DATE), 2013.

[16] T. Parr, “Enforcing Strict Model-view Separation in Template Engines,”
in Proceedings of the 13th International Conference on World Wide Web,
New York, NY, USA, 2004.

[17] J. Detrey and F. de Dinechin, “A VHDL library of LNS operators,”
in Conference Record of the Thirty-Seventh Asilomar Conference on
Signals, Systems and Computers, nov. 2003.

2016 24th European Signal Processing Conference (EUSIPCO)

1732


