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Abstract—The autoregressive models (AR) and moving-average
models (MA) are regularly used in signal processing. Previous
works have been done on dissimilarity measures between AR
models by using a Riemannian distance, the Jeffrey’s divergence
(JD) and the spectral distances such as the Itakura-Saito diver-
gence. In this paper, we compare the Rao distance and the JD
for MA models and more particularly in the case of 1st-order
MA models for which an analytical expression of the inverse of
the covariance matrix is available. More particularly, we analyze
the advantages of the Rao distance use. Secondly, the simulation
part compares both dissimilarity measures depending on the MA
parameters but also on the number of data available.

Index Terms—Jeffrey’s divergence, Rao distance,
moving-average models.

I. INTRODUCTION

For many years, a great deal of interest has been paid to time series
models, namely the autoregressive (AR) models and their variants
such as the time-varying AR models (TVAR), the multivariate AR
models as well as the moving-average models (MA). For the last
decades, they have been used in a wide range of applications
from speech analysis to radar processing. Several issues have been
addressed and include the estimations of the model parameters from
noisy observations [1], the model order selection and model com-
parison. In this latter case, some divergences that aim at measuring
the similarity between distributions of samples can be considered.
In [2], Magnant et al. have thus suggested computing the Jeffrey’s
divergence (JD), which is the symmetric Kullback Leibler (KL)
divergence, between the distributions of the successive samples of
two TVAR models; the authors have also extended their approach to
classify more than two AR models in various subsets and to compare
motion models [3]. There are some other dissimilarity measures such
as the Hellinger distance and the Bhattacharyya divergence. The
reader may refer to [4] for a comparative study between them.
However, information geometry can bring in much. Concerning
model comparison, the authors in [5] and [6] have already analyzed
the information geometry of covariance matrices of AR models. Its
use has already been relevant in different fields from segmentation
or classification [7], [8] to radar processing [9].
In this paper, we propose a study that is complementary to the
above works. More particularly, our purpose is to compare the JD
and the Rao distance [10] between two MA models. Analytical
expressions of both dissimilarity measures are provided, depending
on the MA parameters and the number of samples that are considered.
Then, properties, comments and various examples are given. More
particularly, it is known [11] that under some assumptions, the Rao
distance can be deduced from the JD. We will see in this paper in
which cases this is true. We will hence show when the Rao distance
is of interest to compare MA models.
This paper is organized as follows: In Section II, we first recall
correlation properties of MA models that are useful to get the JD

and the Rao distance. Then, the JD and the Rao distance expressions
are given for 1st-order MA models. In Section III, both measures are
compared with each other by using simulations.
In the following, ⌊.⌋ is the integer part, Tr denotes the trace, the

upperscripts T and H respectively denote the transpose and the
hermitian. diag ([m1, . . . , mn]) is a n× n diagonal matrix whose
main diagonal is m1, . . . , mn. xk1:k2 = (xk1 , . . . , xk2) denotes the
collection of samples from time k1 to k2.

II. JEFFREY’S DIVERGENCE AND RAO DISTANCE

EXPRESSIONS FOR 1
ST -ORDER MA MODELS

A. MA model: some properties

Let us consider M 1st-order MA models, where the mth one is
defined as follows:

xk = b
(m)
0 u

(m)
k + b

(m)
1 u

(m)
k−1, for m = 1, . . . ,M, (1)

where b
(m)
1 is the 1st real MA parameter of the mth model, b

(m)
0 = 1

without loss of generality and the driving processes {u(m)
k }m=1,...,M

are uncorrelated zero-mean white Gaussian processes with variance
σ2
u(m) . The resulting correlation function satisfies:











r
(m)
0 = σ2

u(m)(1 + b
(m)
1

2
)

r
(m)
1 = r

(m)
−1 = σ2

u(m)b
(m)
1

r
(m)
τ = E [xkx

∗
k−τ ] = 0 for |τ | ≥ 2

(2)

In the following, some properties about 1st-order MA models are
provided. They will be required further.

Property 1: the k × k covariance matrices {Q(m)
k }m=1,...,M of the

1st-order MA models are tridiagonal and their inverses are symmetric.

The analytical expression of each element of (Q
(m)
k )−1 at the ith row

and the jth column satisfies for |b(m)
1 | 6= 1 and (i, j) ∈ [1, k]2 [12]:

(

Q
(m)
k

)−1

i,j
=
(

Q
(m)
k

)−1

j,i
= (3)

1 + b
(m)
1

2

r
(m)
0 · (1− b

(m)
1

2
)
·

[

(

−b
(m)
1

)|i−j|

−
(

−b
(m)
1

)2k−i−j+2

−

(

−b
(m)
1

)i+j (

1−
(

b
(m)
1

)2k−2i+2 )(

1−
(

b
(m)
1

)2k−2j+2 )

1−
(

b
(m)
1

)2k+2

]

.

Otherwise, when |b(m)
1 | = 1, the elements of (Q

(m)
k )−1 satisfy1 [13]:

(

Q
(m)
k

)−1

i,j
=
(

Q
(m)
k

)−1

j,i
=











(−1)j−i

σ2

u(m)

i(k+1−j)
k+1

, i ≤ j

(−1)i−j

σ2

u(m)

j(k+1−i)
k+1

, i ≥ j
(4)

1this result can be retrieved by continuity from (3)
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Property 2: depending on the MA parameters, the correlation func-
tions and the power spectral densities (PSDs) of MA models whose
MA parameters are different can satisfy some specific relations.

1) Inverse zeros: If the mth and the nth 1st-order MA models are
defined as follows:

b
(n)
1 =

1

b
(m)
1

, (5)

it can be shown that for any τ :

r
(m)
τ = b

(m)
1

2 σ2
u(m)

σ2
u(n)

r
(n)
τ and

r
(m)
1

r
(m)
0

=
r
(n)
1

r
(n)
0

. (6)

Therefore, r
(m)
τ = r

(n)
τ if:

σ
2
u(m) =

1

b
(m)
1

2
σ
2
u(n) . (7)

Studying the above case is motivated by the following reason: the MA
models can be seen as the output of a finite-inpulse-response filtering
of zero-mean white sequences with variances σ2

u(l) , with l = m,n.
Their transfer functions are defined by:

H
(m)(z) = 1 + b

(m)
1 z

−1
and H

(n)(z) = 1 +
1

b
(m)
1

z
−1

. (8)

Then, H(n)(z) can be rewritten as follows:

|b(m)
1 |H(n)(z) =

|b(m)
1 |

−b
(m)
1

−b
(m)
1 − z−1

1 + b
(m)
1 z−1

(

1 + b
(m)
1 z

−1
)

= G(−b
(m)
1 , z)H(m)(z). (9)

In (9), G(−b
(m)
1 , z) is a Blaschke product [14] which can be seen

as the transfer function of an all-pass filter.
By introducing the PSDs for both models defined by

S
(l)
xx(θ) = σ2

u(l) |H
(l)(z)|2|z=ejθ , l = m,n with θ the

normalized angular frequency, the above equation (9) leads to

S
(m)
xx (θ) = S

(n)
xx (θ) when the variances {σ2

u(l)}l=m,n satisfy (7).

2) Opposites zeros: If b
(n)
1 = −b

(m)
1 , then r

(n)
τ = (−1)|τ |r

(m)
τ

and S
(m)
xx (θ) = S

(n)
xx (θ + π).

3) When b1 = 1 (resp. −1), Sxx(θ) = 0 for θ = ±π (resp. 0).
In the next subsections, let us express the JD and the Rao distance
between two 1st-order MA models.

B. Jeffrey’s divergence between two 1
st-order MA models

1) Analytical expression of the JD:
To analyze the dissimilarities in time between two MA models,
we propose to compute the expression of the JD between the joint
distributions of the values x1:k of the mth and the nth MA models,
denoted pm (x1:k) and pn (x1:k) respectively.
As the JD is the symmetrized version of the KL divergence, let us
recall the KL divergence between two multivariate normal densities
Nm(µ

m
, Qm) and Nn(µ

n
, Qn):

KL(Nm,Nn) =
1

2

[

Tr(Q−1
n Qm)− k − ln

detQm

detQn

+ (µ
n
− µ

m
)TQ−1

n (µ
n
− µ

m
)

]

. (10)

Due to (1), pl (x1:k) = N
(

0k×1, Q
(l)
k

)

for l = m,n and the JD

can be then deduced as follows:

JDmn(k)
∆
= JD (pm (x1:k) , pn (x1:k)) (11)

=
(10)

−k +
1

2

[

Tr
(

Q
(n)
k

−1
Q

(m)
k

)

+ Tr
(

Q
(m)
k

−1
Q

(n)
k

)]

.

Remark: by introducing the eigenvalues {λ(l)
j }j=1,...,k of Q

(l)
k :

JDmn(k) =
1

2

k
∑

j=1





√

√

√

√

λ
(n)
j

λ
(m)
j

−

√

√

√

√

λ
(m)
j

λ
(n)
j





2

. (12)

In the following, our purpose is to express the JD for successive
values of k:
When k = 1, as the variance of the MA sample x

(l)
1 is equal to r

(l)
0 ,

for l = m,n, this leads to:

JDmn(1) = −1 +
1

2

[

r
(m)
0

r
(n)
0

+
r
(n)
0

r
(m)
0

]

. (13)

When k > 1, it can be easily shown that:

Tr

(

(

Q
(n)
k

)−1

Q
(m)
k

)

= r
(m)
0

k
∑

i=1

(

Q
(n)
k

)−1

i,i
(14)

+ r
(m)
1

[

k−1
∑

i=1

(

Q
(n)
k

)−1

i,i+1
+

k
∑

i=2

(

Q
(n)
k

)−1

i,i−1

]

.

Combining (11) and (14), and using the symmetric property of the
inverse of the correlation matrices, one has:

JDmn(k) = −k +
1

2

[

r
(m)
0

r
(n)
0

A
(n)
k +

r
(n)
0

r
(m)
0

A
(m)
k

]

+
r
(m)
1

r
(n)
0

B
(n)
k +

r
(n)
1

r
(m)
0

B
(m)
k , (15)

where A
(l)
k = r

(l)
0

k
∑

i=1

(

Q
(l)
k

)−1

i,i
, l = m,n, satisfies when |b(l)1 | 6= 1:

A
(l)
k =

(3)

(

1 + b
(l)
1

2
)

(

k
(

1 + b
(l)
1

2k+2
)

−
2b

(l)
1

2
(

1−b
(l)
1

2k
)

(

1−b
(l)
1

2
)

)

(

1− b
(l)
1

2
)(

1− b
(l)
1

2k+2
) ,

(16)

and when |b(l)1 | = 1:

A
(l)
k =

(4)

k(k + 2)

3
. (17)

It should be noted that A
(l)
k only depends on b

(l)
1 and k. Replacing

b
(l)
1 by its opposite or its inverse leads to the same value of A

(l)
k .

According to (16) and (17), A
(l)
1 = 1. Nevertheless, according to

(11) and (15):

JDll(k) =
(11)

0 =
(15)

−k + A
(l)
k + 2

r
(l)
1

r
(l)
0

B
(l)
k . (18)

Therefore B
(l)
k = r

(l)
0

k−1
∑

i=1

(

Q
(l)
k

)−1

i,i+1
with l = m,n can be

expressed by using A
(l)
k as follows:

B
(l)
k =

1

2

r
(l)
0

r
(l)
1

[

k − A
(l)
k

]

. (19)

Combining (15) and (19) leads to:

JDmn(k) = k

[

−1 +
1

2

(

r
(m)
1

r
(n)
1

+
r
(n)
1

r
(m)
1

)]

(20)

+
1

2

[(

r
(m)
0

r
(n)
0

−
r
(m)
1

r
(n)
1

)

A
(n)
k +

(

r
(n)
0

r
(m)
0

−
r
(n)
1

r
(m)
1

)

A
(m)
k

]

.

If k = 1, (20) reduces to (13).
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2) Symmetry properties, features and other comments:
Given (15)-(20), some remarks and comments can be highlighted.

Remark 1: it should be noted that when b
(m)
1 and b

(n)
1 are replaced

by their opposites in (20), the JD is unchanged. In addition, if

b
(m)
1 = −b

(n)
1 , replacing the MA parameters by their inverses does

not change the JD.
Remark 2: JDmn(k + 1) − JDmn(k) is not a constant and varies
over time. By exploiting (20), one obtains the following expression:

JDmn(k + 1) − JDmn(k) = −1 +
1

2

(

r
(m)
1

r
(n)
1

+
r
(n)
1

r
(m)
1

)

+
1

2

[

(

r
(m)
0

r
(n)
0

−
r
(m)
1

r
(n)
1

)

(

A
(n)
k+1 − A

(n)
k

)

(21)

+

(

r
(n)
0

r
(m)
0

−
r
(n)
1

r
(m)
1

)

(

A
(m)
k+1 − A

(m)
k

) ]

.

In (21), the dependancy of the JD increment over time only depends

on A
(l)
k+1−A

(l)
k , with l = m,n. Furthermore, when k is high enough,

according to (16) and (17), A
(l)
k+1 − A

(l)
k becomes:

when |b(l)1 | 6= 1:

A
(l)
k+1 − A

(l)
k ≈ E

(l)
k =

1 + b
(l)
1

2

|1− b
(l)
1

2
|
, (22)

and when |b(l)1 | = 1:

A
(l)
k+1 − A

(l)
k = E

(l)
k =

2k + 3

3
. (23)

Thus, JDmn(k + 1) − JDmn(k) can be approximated by the
following expression:

JDmn(k + 1) − JDmn(k) ≈ ∆JDmn(k) (24)

= −1 +
1

2

(

r
(m)
1

r
(n)
1

+
r
(n)
1

r
(m)
1

)

+
1

2

[(

r
(m)
0

r
(n)
0

−
r
(m)
1

r
(n)
1

)

E
(n)
k +

(

r
(n)
0

r
(m)
0

−
r
(n)
1

r
(m)
1

)

E
(m)
k

]

.

If both |b(m)
1 | 6= 1 and |b(n)

1 | 6= 1, then ∆JDmn(k) is constant and
does not vary over the time k. In this case, (24) leads to:

JDmn(k) ≈ JDmn(k0) + (k − k0)∆JDmn, (25)

with k0 the instant from which JDmn(k0 + 1) − JDmn(k0) is
approximatively equal to ∆JDmn . When k → +∞, the following
approximation can be done:

lim
k→+∞

JDmn(k) = k∆JDmn. (26)

The behaviour of the JD is closely related to the increment when k
is high. This provides some asymptotical properties when studying
the JD between two MA models.
Remark 3: When the models (m) and (n) satisfy (5), i.e. they have
inverse MA parameters or equivalently inverse zeros, combining (6)
and (20) leads to:

JDmn(k) = k

[

−1 +
1

2

(

b
(m)
1

2 σ2
u(m)

σ2
u(n)

+
1

b
(m)
1

2 σ2
u(n)

σ2
u(m)

)]

. (27)

In addition, if the driving-process-variance property (7) is satisfied,
then:

JDmn(k) = 0. (28)

In this case, although the MA parameters are not the same, the PSDs
are the same and the JD between both models is equal to zero.

C. Rao distance between two 1
st-order MA models

1) Detailed Rao distance expression:
The square of the Rao distance between the k×k correlation matrices

of two MA models (m) and (n) is given by:

d
2
mn(k) = Tr

[

(

ln

(

(

Q
(m)
k

)−1/2

Q
(n)
k

(

Q
(m)
k

)−1/2
))2

]

. (29)

In the above equation, the correlation matrices can be rewritten by
using their diagonalized forms.
According to [15], the hth eigenvalue of a tridiagonal Toeplitz matrix
is given for l = m,n by:

λ
(l)
h = r

(l)
0 + 2 · r(l)1 · cos

(

hπ

k + 1

)

, (30)

with h = 1, . . . , k. The corresponding eigenvector vh does not
depend on the model and satisfies:

vh = [vh,1, . . . , vh,k]
T

(31)

=

[

sin

(

hπ

k + 1

)

, sin

(

2hπ

k + 1

)

, . . . , sin

(

hkπ

k + 1

)]T

.

Then, given (30) and (31), the Rao distance (29) can be expressed
as follows:

d
2
mn(k) =

k
∑

i=1

k
∑

j=1

ln
2

(

λ
(n)
j

λ
(m)
j

)

·
vj,ivi,j

||vi|| · ||vj ||
. (32)

By developping and simplifying (32), this leads to:

d
2
mn(k) =

k
∑

j=1

ln
2

(

λ
(n)
j

λ
(m)
j

)

. (33)

At this stage, by combining (30) and (33), one obtains:

d
2
mn(k) = kln

2

(

r
(n)
0

r
(m)
0

)

(34)

+ 2ln

(

r
(n)
0

r
(m)
0

)

k
∑

h=1

ln









1 +
2r

(n)
1

r
(n)
0

cos
(

hπ
k+1

)

1 +
2r

(m)
1

r
(m)
0

cos
(

hπ
k+1

)









+
k
∑

h=1

ln
2









1 +
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(n)
1

r
(n)
0
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(
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k+1

)

1 +
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(m)
1

r
(m)
0
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(
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k+1

)









.

Considering (30) and by using Taylor series expansion, (34) becomes:

d
2
mn(k) = kln

2

(

r
(n)
0

r
(m)
0

)

(35)

+ 2ln

(

r
(n)
0

r
(m)
0
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+∞
∑

p=1

−1

2p

[(

2r
(n)
1

r
(n)
0

)2p

−

(

2r
(m)
1

r
(m)
0

)2p]

S2p,k

]

+

+∞
∑

p1=1

+∞
∑

p2=1

Tmn
2p1,2p2S2p1+2p2,k

4p1p2

+

+∞
∑
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+∞
∑
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2p1+1,2p2+1S2p1+2p2+2,k
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,

2016 24th European Signal Processing Conference (EUSIPCO)

207



with:

T
mn
a,b =

[

2r
(n)
1

r
(n)
0

]a+b

+

[

2r
(m)
1

r
(m)
0

]a+b

− 2

[

2r
(n)
1

r
(n)
0

]a [

2r
(m)
1

r
(m)
0

]b

,

S2a,k =
k
∑

h=1

cos
2a

(

hπ

k + 1

)

.

By using the binomial theorem, it can be shown that:

S2a,k =



−1 +
k + 1

22a

βm
∑

β=0

(

2a
a− β(k + 1)

)



 ,

where βm is equal to
⌊

a
(k+1)

⌋

.

2) Symmetry, features and other comments:

Remark 4: once again, it should be noted that when b
(m)
1 and b

(n)
1

are replaced by their opposites in (35), the square of the Rao distance
is the same.
Remark 5: if k is high enough, when a ≤ k, βm = 0:

S2a,k =

[

−1 +
k + 1

22a

(

2a
a

)]

. (36)

Otherwise when a and k becomes high:

S2a,k ≈

[

−1 +
k + 1

22a

(

2a
a

)]

. (37)

Finally, by exploiting (35), (36) and (37):

d
2
mn(k + 1)− d

2
mn(k) ≈ ∆d

2
mn, (38)

with ∆d
2
mn = ln

2

(

r
(n)
0

r
(m)
0

)

(39)

+ 2ln

(

r
(n)
0

r
(m)
0

)[

+∞
∑

p=1

−(2p)!

2p p! p!

[(

r
(n)
1

r
(n)
0

)2p

−

(

r
(m)
1

r
(m)
0

)2p]]

+

+∞
∑

p1=1

+∞
∑

p2=1

Tmn
2p1,2p2(2p1 + 2p2)!

4p1p2 ((p1 + p2)!)
2 22p1+2p2

+

+∞
∑

p1=0

+∞
∑

p2=0

Tmn
2p1+1,2p2+1(2p1 + 2p2 + 2)!

(2p1 + 1)(2p2 + 1) ((p1 + p2 + 1)!)2 22p1+2p2+2
.

Also, the square of the Rao distance can be approximated by a linear
function of this increment:

d
2
mn(k) ≈ d

2
mn(k1) + (k − k1)∆d

2
mn, (40)

with k1 the instant from which d2mn(k1 + 1) − d2mn(k1) ≈ ∆d2mn.
When k → +∞, the Rao distance can be approximated by the
following equation:

lim
k→+∞

d
2
mn(k) = k∆d

2
mn. (41)

According to the above expressions (40)-(41), the increment study
gives some indications about the behaviour of the Rao distance,
especially when k is getting higher and higher.

D. Links and differences between the JD and the Rao distance

In many applications, the Rao distance is deduced from the JD.
Indeed, for distributions that lie infinitesimally close on the proba-
bilistic manifold, the square of the Rao distance is approximatively
twice the JD between the distributions [11]:

d2mn(k)

JDmn(k)
≈ 2. (42)

In the next section, we are going to analyze by simulations if (25)
and (40) are confirmed and when the above theoretical property (42)
is not satisfied.

III. COMPARISON OF DISSIMILARITY MEASURES

A. A specific case

Firstly, let us confirm the way the JD and the Rao distance evolve
when k increases. Fig. 1 illustrates the equations (25) and (40) when
the 1st MA parameters are equal to 0.5 and 0.7.

Instant k
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Square of Rao distance with b
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1

(2)
 = 0.5

Square of Rao distance linear representation

Fig. 1. JD, square of Rao distance and their respective increments

B. General case
Let us now consider the 1st MA parameters of both models vary in

the interval [−3, 3], σ2
u(1) = σ2

u(2) = 3 and k = 25. The Rao distance
and the JD are firstly compared with the Itakura-Saito divergence (IS)
defined as follows:

DIS21 =
1

2π

π
∫

−π

[σ2

u(2)
|H(2)(z)|2

|z=ejθ

σ2

u(1)
|H(1)(z)|2

|z=ejθ

− ln









σ2

u(2)
|H(2)(z)|2

|z=ejθ

σ2

u(1)
|H(1)(z)|2

|z=ejθ









− 1

]

dθ.

(43)

An approximation of the symmetric IS, based on the rectangle
method, is computed on the Fig. 2.
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Fig. 2. Symmetric Itakura-Saito Divergence with b
(l)
1 ∈ [−3, 3], l = 1, 2

By looking at Fig. 3 (a) and (b) and also comparing them, some
comments can be drawn:
1) The remarks 1 and 4 are confirmed because a center of symmetry
(0, 0) can be observed in the figures. In addition, as the JD and the

Rao distance are symmetric, the axis b
(1)
1 = b

(2)
1 is a symmetric axis

on both figures. As a consequence, a fourth of the figure defined

by |b(1)1 | ≤ b
(2)
1 and 0 ≤ b

(2)
1 ≤ 3 is enough to retrieve the whole

representation.
2) It can be shown from (20) and (35) that if k > 1:

• when |b(l)1 | ≤ 1, for l = 1 or 2, the maxima of both the JD and
the Rao distance are obtained for (−1, 1) and (1,−1).
• when the absolute value of one of the 1st MA parameters is greater
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Fig. 3. JD and square of Rao distance when {b
(l)
1 }l=1,2 vary in [−3, 3]

than 1, the maximum and the local maxima are reached when the
absolute value of the other 1st MA parameter is equal to 1.
In addition, the JD has a greater range of values than the square
of the Rao distance and its range grows with k due to (23). Due
to (16), (17) and (20), when the 1st MA parameter of one model
tends to ±1, a small variation of this 1st MA parameter leads to a
large variation on the JD value whatever the value of the 1st MA
parameter of the other model. This sensitivity is all the greater as
k grows. Fig. 3 (b) describing the Rao distance for various 1st MA
parameters is less spiky than Fig. 3 (a) describing the JD. The above
phenomenon explains why the ratio between the square of the Rao
distance and the JD is not always close to 2.
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Fig. 4. Ratio between the square of the Rao distance and the JD

Therefore, as depicted in Fig. 4, (42) is not necessarily satisfied.
When comparing two 1st-order MA models, the JD is rather of real
interest when the absolute value of the 1st MA parameter of one
model is close2 to 1. However, due to its large range of values, the
JD could be less attractive in other cases, especially when comparing
more than two models. Therefore, the Rao distance would be more
suited.

IV. CONCLUSIONS AND PERSPECTIVES

In this paper, we have suggested using the JD and the square of
the Rao distance to compare two real 1st-order MA models. In most
of the cases, both dissimilarity measures can be approximated by
affine functions depending on time k. Their slopes depend on the
parameters of both MA models. In addition, the ratio between the
JD and the square of the Rao distance is often close to 2, but the
main difference between both measures appears when the 1st MA
parameter of one model is equal to ±1. In this case, we show that
the JD has a different behaviour. The next step is to use the JD and
the Rao distance to compare more than two 1st-order MA models by
using an approach similar to the one presented in [16]. In addition,
we are going to investigate the comparison of complex 1st-order MA
models.
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