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Abstract—A large number of spatial room impulse responses
can be measured efficiently by using a moving microphone in
combination with a time-varying system identification method.
The microphone moves on a predefined trajectory and captures
the response of the acoustic system which is periodically ex-
cited. The instantaneous impulse responses are computed from
the captured signal by taking the time-variance explicitly into
account. In this paper, three different continuous measurement
techniques are investigated and compared in a unified framework.
It is shown that impulse response estimation constitutes a
spatial interpolation process, where each method corresponds
to a specific interpolation filter. In numerical simulations the
performance of theses approaches are evaluated in terms of
system distance and spatial bandwidth.

I. INTRODUCTION

Multichannel sound reproduction systems with a high num-
ber of loudspeakers have recently gained considerable at-
tention [1]. For the auralization of real environments, like
cathedrals and concert halls, room impulse responses are
measured in multiple positions in order to capture the spatio-
temporal structure of the reverberant sound field. These spatial
room impulse responses are often decomposed into plane
waves [2], [3], and the plane wave components are reproduced
by loudspeakers using a suitable multichannel reproduction
technique, such as Wave Field Synthesis [4]. The achievable
spatial resolution of the reproduced sound field scales with the
number of impulse responses. Considering the dimensionality
of a sound field within the audio frequency band (<20 kHz),
the theoretically required number of impulse responses is in
the order of 105 even for a small bounded region (<1 m) [5].
Measuring such a large number of impulse responses requires
a lot of time and effort, and the measurement may suffer
from time-variance of the system due to the change of room
temperature [6] and the time-varying characteristics of electro-
acoustics devices. Such changes are not easily predicted nor
can be conveniently compensated.

The measurement time can be reduced considerably by
employing a continuous measurement technique. Typically,
the acoustic space is excited by a periodic signal and the
response is captured by a continuously moving microphone.
The instantaneous impulse responses are then computed from
the captured signal. Since the dynamics of the system can
be predicted, the time-variance can be explicitly considered.
Several approaches have been proposed for this purpose [7]–
[10]. Ajdler, for instance, proposed an analytic solution derived

in the spatio-temporal frequency domain by exploiting the
projection-slice theorem [8]. The excitation signal is a sum
of multiple sinusoids with appropriately spaced frequencies.
Antweiler, on the other hand, employed a normalized least
mean square (NLMS) algorithm. The system is excited by
a so-called periodic perfect sequence, and the instantaneous
impulse responses are computed sample-by-sample [9]. The
computational complexity of this approach was reduced by
Carini [11].

In [10], the authors proposed a novel system identification
method, where each impulse response is represented as an or-
thogonal expansion. The expansion coefficients are computed
from the captured signal by applying a spatial interpolation
filter. The order and complexity of the interpolation filter
can be chosen freely depending on the required technical
and/or perceptual accuracy. The method is used for spatial
room impulse response measurement [12] and binaural room
impulse response (BRIR) measurement [13].

In this paper, the methods [8] and [9] are reviewed in the
framework we proposed in [10]. It is shown that each method
corresponds to a specific type of spatial interpolation filter.
Along with the theoretical analysis, numerical simulations are
presented where the technical performance is evaluated.

II. CONTINUOUS MEASUREMENT TECHNIQUES

We consider the measurement of impulse responses on a
circular contour as depicted in Fig. 1(a). A discrete finite
impulse response (FIR) model is assumed. For a given source
signal ψ(n), the sound field at (r0, φ) is

p(φ, n) =
N−1∑
l=0

h(φ, l)ψ(n− l) (1)

where h(φ, l) denotes the l-th coefficient of the impulse
response at angular position φ, and N the length of the impulse
response. For convenience, r0 is omitted.

We assume that the system is excited by a periodic perfect
sequence ψ(n) = ψ(n + γN), γ ∈ Z, where the period N is
longer than any impulse response of the system. The circular
(cyclic) autocorrelation ϕψψ(n) of a perfect sequence yields

ϕψψ(n) =
1

N

N−1∑
n′=0

ψ(n′)ψ(n′ + n) = E · δ(n) (2)
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for n = 0, . . . , N − 1 where δ(·) denotes the unit impulse
function and E the energy within a period. Without loss of
generality it is assumed that E=1. Due to the autocorrelation
of the perfect sequence, the impulse response is obtained by a
length-N circular convolution of the captured signal and the
time-reversed input signal ψ(−n),

h(φ, l) =
N−1∑
η=0

{N−1∑
ν=0

h(φ, ν)ψ(η − ν)︸ ︷︷ ︸
p(φ,η)

}
ψ(η − l) (3)

for l = 0, . . . , N−1.
For a given radius, the spatial-temporal impulse responses

are represented as circular harmonics expansion [14],

H(φ, ωk) =
∞∑

m=−∞
H̊m(ωk)eimφ (4)

H̊m(ωk) =
1

2π

∫ 2π

0

H(φ, ωk)e−imφdφ (5)

where H(φ, ωk) denotes the discrete Fourier transform (DFT)
of h(φ, n), ωk = 2π

L k the k-th frequency bin, and H̊m(ωk)
the m-th circular harmonics expansion coefficient.

Assume that the microphone moves at a constant angular
speed Ω in rad/sample (Ωfs in rad/s with fs denoting the
sampling frequency). The microphone captures the sound field
at the discrete positions φn = Ωn and thus the captured signal
reads

s(n) = p(Ω · n, n), n = 0, . . . , L− 1 (6)

where the total length of the captured signal L= 2π
Ω is assumed

to be an integer (φn = 2π
L n). Note that only one sample is

available for each angular position, and thus (3) cannot be
used straightforwardly for system identification.

In the subsequent, three different approaches are introduced
and their relation is revealed.

A. Interpolation of Orthogonal Expansion Coefficients

In our work [10], (3) is interpreted as an orthogonal expan-
sion

h(φn, l) =

N−1∑
η=0

aη(φn)ψ(η − l) (7)

where the basis functions are time-shifted and time-reversed
sequences ψ(η − l) and aη(φn)=p(φn, η) the corresponding
expansion coefficients. The orthogonality of the basis func-
tions can be deduced from (2).

By plugging (7) into (1), it is easily shown that [12, Eq. (9–
11)]

s(n) = an̄(φn) (8)

where n̄ = n mod N . This states that the captured signal
corresponds to a spatial sampling of the expansion coefficients.
As illustrated in Fig. 1(b), each coefficient is sampled at
M = L

N equiangular positions, and thus aη(φn) is decimated
by a factor of N .

The missing expansion coefficients can be recovered if
the spatial bandwidth of aη(φn), and equivalently the spatial

x

y

p(φn, n)

Ω

n = 0

r0

φ

φPW =−π2
ψ(n)

(a) configuration

a0(n) a1(n) a2(n) a3(n)

(b) decimated aη(n)

Fig. 1: (a) Continuous measurement on a circle (N = 4, L=
24). The gray circles indicate the positions where the signal
is captured. (b) The relation of s(n) and aη(n). The red
circles indicate the positions where the respective coefficients
are captured. In this example, the effective number of spatial
sampling positions is L

N = 6.

bandwidth of h(φn, l), is smaller than M [3]. For a bounded
circular region, the circular harmonics coefficients exhibit a
low-pass characteristic and the bandwidth is approximated by
2ωmax
c r0 = 2πfs

c r0 with c denoting the speed of sound [5]. The
anti-aliasing condition 2πfs

c r0 < M leads to the maximum
allowable angular speed of the microphone [12, Eq. (14)]

Ω < c
r0Nfs

. (9)

Once the latter is fulfilled, aη(φn) can be obtained by applying
an interpolation filter and finally h(φn, l) is computed by using
(7). The order of the spatial interpolation filter is determined
by application specific requirements. In [12], we observed
that perceptually acceptable results can be achieved even with
linear or cubic spline interpolation. Though, the perceptual
evaluation is out of the scope of this paper, and only the
technical performance is considered.

B. Adaptive Filtering

The NLMS algorithm is often used in combination with a
periodic perfect sequence for system identification. The filter
coefficients are updated sample-by-sample [15],

ĥ(φn, l) = ĥ(φn−1, l) + ∆
ε(n)

E
ψ(n− l), (10)

where ∆ denotes the step size of the adaptation. The error
ε(n) is the difference between the captured signal s(n) and
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its estimate ŝ(n),

ε(n) = s(n)−
N−1∑
l=0

ĥ(φn−1, l)ψ(n− l)︸ ︷︷ ︸
ŝ(n)

. (11)

The step size ∆ is set to unity which was shown to be
the optimal step size for fast convergence under noiseless
conditions which is also assumed here [16]. Again, E = 1
is assumed.

Note that ψ(n− l) in (10) and (11) is the n̄-th orthogonal
basis introduced in (7). As pointed out in [9] and [17], each
orthogonal component is updated once in a period. When
a coefficient is updated it remains unchanged during the
following N − 1 samples. By using (8) and the fact that

ŝ(n) = ân̄(φn) = an̄(φn−N ), (12)

(10) can be reformulated as

ĥ(φn, l) = ĥ(φn−1, l)+{
an̄(φn)− an̄(φn−N )

}
ψ(n̄− l). (13)

The old value of the n̄-th coefficient is replaced with an̄(φn)
which is equal to s(n). The NLMS algorithm thus interpo-
lates the decimated expansion coefficients with a rectangular
window

gNLMS(φn) =

{
1, 2π

M ≤ φn ≤ 0

0, elsewhere.
(14)

In [10] and [18], it was pointed out that NLMS with ∆ = 1
is equivalent to the length-N circular convolution of s(n) and
the time reversed perfect sequence ψ(−n)

ĥ(φ, l) =
N−1∑
ν=0

s(l − ν)ψ(−ν). (15)

This indicates that this method implicitly assumes piece-wise
time-invariance of the system.

Note that gNLMS(φn) in (14) is not centered at the origin
but shifted by − π

M . This is attributed to the fact that NLMS
is an on-line algorithm and takes only the values up to the n-th
sample. As a result, the tracking of the system is lagged and
ĥ(φn, n) suffers from an angular shift. If on-line processing is
not a requirement, the accuracy can be improved by shifting
gNLMS(φn) by π

M , or equivalently by modifying (10) as

ĥ(φn, l) = ĥ(φn−1, l) + ε(n+ N
2 )ψ(n+ N

2 − l). (16)

In the remainder of this paper, only this modified NLMS is
considered.
C. Projection-Slice Theorem

The approach introduced in [8] was formulated in the
continuous-time and continuous-space domain. In the follow-
ing, its discrete-time and -space variant is derived in order
to enable a direct comparison with the other continuous
measurement techniques.
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Fig. 2: Projection-slice approach. (a) The blue and black
circles indicate P̊m(ωk) and S(ωk), respectively. The bandpass
components in (c) and (d) correspond to horizontal slices of
(b) at fcenter.

The sound field on the circular contour can be represented as
a double inverse DFT of the spatio-temporal spectrum P̊m(ωk)
(refer to (4) and (5)),

p(φn, n) =
1

L

L−1∑
k=0

P (φn, ωk)eiωkn

=
1

L

L−1∑
k=0

{ L−1∑
m=0

P̊m(ωξ)e
imφn

}
eiωkn. (17)
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Due to the N -periodicity of p(φn, n), the temporal frequency
spectra P (φn, ωk) and P̊m(ωk) are discrete and have nonzero
values only for k = γM, γ ∈ Z.

Since s(n) is a slice of the two-dimensional function
p(φn, n) along φn = Ωn, the temporal frequency spectrum
of the captured signal is

S(ωk) =
L−1∑
n=0

p(Ωn, n)e−iωkn (18)

where ωk = 2π
L k, k = 0, . . . , L− 1. If we plug (17) into (18)

S(ωk) =
L−1∑
n=0

{ 1

L

L−1∑
ξ=0

( L−1∑
m=0

P̊m(ωξ)e
iΩmn

)
eiωξn

}
e−iωkn

=
1

L

L−1∑
ξ=0

L−1∑
m=0

P̊m(ωξ)
( L−1∑
n=0

ei(Ωm+ 2π
L ξ−

2π
L k)n

)
. (19)

Since N = L
M and Ω = 2π

L , the bracketed term in (19) is an
impulse train with period L

L−1∑
n=0

ei
2π
L (m+ξ−k)n = L

∑
γ∈Z

δ(m+ ξ − k + γL), (20)

and therefore,

S(ωk) =

L−1∑
m=0

P̊m(ωk−m) =

L−1∑
ξ=0

P̊k−ξ(ωξ). (21)

This constitutes a projection of P̊m(ωk) along k = m + ξ in
the m-ωk plane. The result is known as the projection-slice
theorem and states that the Fourier transform of a slice of
a two-dimensional function is equivalent to a projection of
the two-dimensional Fourier transform. To be able to obtain
P̊m(ωk) from S(ωk), there has to be only one term on the
right hand side of (21) so that it is a one-to-one mapping.
This requires P̊m(ωk) to be spatially band-limited (|m| ≤ M

2 )
and Ω to satisfy condition (9). As depicted in Fig. 2(a), the
frequency bins of S(ωk) indicated by black circles are
mapped back to P̊m(ωk) indicated by blue circles . In terms
of vector/matrix computations, the L× 1 vector composed of
S(ωk) is converted to an N×M matrix. An example is shown
in Fig 2(b), 2(c) and 2(d). As P̊m(ωk) exhibits a low-pass
characteristic along the m-axis, S(ωk) consists of bandpass
components with varying bandwidth.

In order to obtain the impulse responses, the sound field
p(φ, n) or equivalently aη(φ) is computed from the band-
limited circular harmonics coefficients P̊m(ωk) by using (4).
This corresponds to an ideal low-pass filter in the spatial
domain, and thus the decimated orthogonal expansion coef-
ficients are interpolated by the periodic sinc function

gPS(φn) =
1

M

sin
(
M φn

2

)
sin
(
φn
2

) . (22)

In practice, a successful implementation of the projection-
slice approach is not trivial. If L

N is not exactly an integer,
(21) is no longer a one-to-one mapping due to the leakage
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Fig. 3: Comparison of the measured impulse responses. (a)
and (b) show the magnitude of the impulse responses in dB.
(c) shows the system distance (23) of the estimated impulse
responses for different angles.

effect. Moreover, if the assumption of spatial band-limitation
does not hold, the result is strongly degraded.

III. EVALUATION

The performance of the continuous measurement techniques
is evaluated in numerical simulations. A Dirac-shaped plane
wave propagating in the direction φPW = −π2 is assumed
as incident sound field for fs = 16 kHz, r0 = 0.5 m,
Ω× fs= π

8 rad/s, N=1600 (0.1 s). The spatial room impulse
response h(φ, t) = δ

(
t− r0

c cos(φ− φPW)
)

was simulated by
using fractional delay filters (Lagrange filter of order 23) [19].
Three different approaches were implemented:
• linear interpolation (LI) of aη(φn) (Sec. II-A)
• modified NLMS algorithm (Sec. II-B) and
• the projection-slice (PS) approach (Sec. II-C).
The original and estimated impulse responses are compared

in Fig. 3(a) and 3(b) for φn = π
2 and φn = π, respectively.

High accuracy is achieved where a high-order spatial inter-
polation filter is used. Clearly, the performance is strongly
influenced by the time variability of the system. For φn = π
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Fig. 4: Circular harmonics spectra of continuously measured
impulse responses.

where the time-of-arrival of the plane wave varies rapidly,
the performance is degraded irrespective of the employed
method. This can be seen more clearly in Fig. 3(c) where the
normalized system distance is compared for different angles

D(φn) =

(∑N−1
l=0 |h(φn, l)− ĥ(φn, l)|2∑N−1

l=0 |h(φn, l)|2

) 1
2

. (23)

Close to φn = π
2 and φn = 3π

2 , two low-order interpolators
(NLMS and linear interpolation) exhibit comparable or even
better performance as the projection-slice approach. It is likely
that the system is almost time-invariant in this range, thus
high-order interpolation has little advantage.

Since the spatial room impulse responses are intended for
sound field analysis with high spatial resolution, the spatial
frequency spectrum is also examined. The circular harmonics
expansion coefficients are shown in Fig. 4. Compare them
with Fig. 2(b). NLMS and linear interpolation both suffer
from spatial aliasing, whereas the projection-slice approach
suppresses the spectral repetitions.

IV. CONCLUSION

Currently available continuous measurement techniques are
formulated and compared in a unified framework. It was shown
that these methods can be considered as spatial interpolation
filters: NLMS corresponds to rectangular window whereas
the projection-slice approach corresponds to the periodic sinc
function. Numerical simulations indicate that the projection-
slice approach exhibits favorable properties in terms of system
distance and suppression of spatial aliasing.
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[6] B. Bernschütz, C. Pörschmann, S. Spors, and S. Weinzierl, “Zeitin-
varianzen durch Temperaturveränderung bei sequentiellen sphärischen
Mikrofonarrays im Plane Wave Decomposition Verfahren,” in Proc. of
the 37th German Annual Conference on Acoustics (DAGA), Düsseldorf,
Germany, Mar. 2011.

[7] E. M. Hulsebos, “Auralization using Wave Field Synthesis,” Ph.D.
dissertation, Delft University of Technology, Delft, The Netherlands,
2004.

[8] T. Ajdler, L. Sbaiz, and M. Vetterli, “Dynamic Measurement of Room
Impulse Responses using a Moving Microphone,” J. Acoust. Soc. of
America, vol. 122, no. 3, pp. 1636–1645, 2007.

[9] C. Antweiler, “Multi-Channel System Identification with Perfect Se-
quences.” John Wiley & Sons, 2008, pp. 171–198.

[10] N. Hahn and S. Spors, “Identification of Dynamic Acoustic Systems
by Orthogonal Expansion of Time-variant Impulse Responses,” in Proc.
of the 6th International Symposium on Communications, Control and
Signal Processing (ISCCSP). IEEE, May 2014, pp. 161–164.

[11] A. Carini, “Efficient NLMS and RLS Algorithms for Perfect Periodic
Sequences,” in International Conference on Acoustics Speech and Signal
Processing (ICASSP). IEEE, 2010, pp. 3746–3749.

[12] N. Hahn and S. Spors, “Continuous Measurement of Impulse Responses
on a Circle using a Uniformly Moving Microphone,” in Proc. of the
European Signal Processing Conference (EUSIPCO), Nice, France, Aug.
2015.

[13] ——, “Measurement of Time-Variant Binaural Room Impulse Re-
sponses for Data-Based Synthesis of Dynamic Auditory Scenes,” in
Proc. of the 40th German Annual Conference on Acoustics (DAGA),
Oldenburg, Germany, Mar. 2014.

[14] E. Williams, Fourier Acoustics: Sound Radiation and Nearfield Acous-
tical Holography. Academic Press, 1999.

[15] S. Haykin, Adaptive Filter Theory. Prentice Hall, 2002.
[16] C. Antweiler, A. Telle, and P. Vary, “NLMS-type System Identification

of MISO Systems with Shifted Perfect Sequences,” Proc. International
Workshop on Acoustic Signal Enhancement (IWAENC), 2008.

[17] N. Hahn and S. Spors, “Analysis of Time-Varying System Identification
using Normalized Least Mean Square (NLMS) in the Context of
Data-Based Binaural Synthesis,” in Proc. of the 42nd German Annual
Conference on Acoustics (DAGA), Aachen, Germany, Mar. 2016.

[18] C. Antweiler, S. Kuehl, B. Sauert, and P. Vary, “System Identification
with Perfect Sequence Excitation-Efficient NLMS vs. Inverse Cyclic
Convolution,” in Proc. of the 11th ITG Conference on Speech Commu-
nication. VDE, 2014, pp. 1–4.

[19] T. I. Laakso, V. Valimaki, M. Karjalainen, and U. K. Laine, “Splitting
the Unit Delay,” Signal Processing Magazine, IEEE, vol. 13, no. 1, pp.
30–60, 1996.

2016 24th European Signal Processing Conference (EUSIPCO)

1642


