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Abstract—This paper proposes a demand response strategy
for energy management within a smart grid community of
residential households. Some of the households own renewable
energy systems and energy storage systems (ESS) and sell the
excess renewable energy to the residences that need electrical
energy. The proposed strategy comprises methods that provide
benefits for the residential electricity users and for the load
aggregator. Specifically, we propose an off-line algorithm that
schedules the renewable resources integration by trading energy
between the renewable energy producers and buyers. Moreover,
we propose a geometric programming based optimization method
that uses the ESS for balancing the community’s power grid
load and for reducing the grid consumption cost. Simulations
show that the proposed method may lead to a community’s
grid consumption cost reduction of 10.5%. It may also achieve
balanced load profiles with peak to average ratio (PAR) close to
unity, the average PAR reduction being 52%.

Index Terms—smart grids, optimization, demand response,
renewable energy, load balancing, geometric programming

I. INTRODUCTION

The continuous growth of electricity demands and the global
concern for carbon emissions calls for a significant increase
of electricity generation from distributed renewable sources.
This requires the development of methods that efficiently
integrate the renewable energy supplies into the power grid.
Some demand response approaches that use energy storage
systems (ESS) to manage the renewable energy resources
in a centralized or decentralized fashion have already been
proposed [1], [2]. Other methods assure the efficiency of
the power grid by facilitating the integration of renewable
resources [3] and at the same time provide balanced demands
for the utility company [4]. Different methods can provide
significant cost reduction to the electricity consumers [5], [6].
Energy storage management methods can bring benefits for
the grid operators by avoiding grid congestion [7].

In this paper we propose a novel demand response approach
for optimizing the energy trade within a smart grid community
of households. We consider a smart grid community com-
posed of several residential households that are being served
by the same load aggregator. Some of the households own
nondispatchable renewable energy systems (RES), such as
wind turbines or solar panels, as well as ESS. The amount
of renewable energy that exceeds the demands of the RES
owners is being sold to the other residential energy users in
the community. The coordination of the energy flow is fully

centralized and is performed by the load aggregator against
a fee. The value of this fee and the price of the renewable
energy are not discussed in this paper. It is assumed that
all households in the community are equipped with smart
energy-management meters that predict their energy demand
profiles and the renewable energy availability profiles, for a
finite time period ahead. Methods as the one in [8] perform
such predictions. The households communicate these profiles
to the load aggregator through a two-way communication
infrastructure. The load aggregator knows the daily market
electricity prices and finds the optimal energy trade solution
for the given time period ahead. The main contributions of
this paper are stated below:
• We propose an off-line algorithm for scheduling the integra-

tion of the renewable resources produced within the smart
grid community. The algorithm calculates the amounts of
renewable energy that need to be stored for meeting the
demand of each RES owner during the given period ahead.
The excess amounts of renewable energy are sold to the
other energy users in the community. All the renewable en-
ergy sellers receive benefits in proportion to their renewable
energy production. The algorithm makes sure that the energy
is stored for the shortest period possible in order to prevent
energy losses that occur when storing energy.

• We propose an optimization algorithm for balancing the
power grid load and reducing the cost of the consumed
grid energy. The solution for the problem is found using
geometric programming (GP). The objective function of this
optimization is derived using the Cobb-Douglas production
function from consumer theory [9]. The optimization is per-
formed by using the available storage capacity, not needed
for storing renewable energy. Similar GP approach was
used in [10] for balancing the grid electricity consumption
of a single residential user. In this paper we extend this
technique to perform load flattening for a whole community
of households. The work in [10] is also extended by taking
into account renewable energy sources.
Methods that approach the problem of community storage

management for renewable energy integration were proposed
in [1], [2]. The novelty of this work stands in the innova-
tive use of multiple ESS to jointly achieve three objectives:
integrate the renewable resources by energy trading, balance
the community’s power grid load and reduce the cost of the
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energy consumed from the power grid.
Simulation results demonstrate that the proposed energy

management method achieves a balanced load with a peak
to average ratio (PAR) close to unity. Average PAR reduction
of 52% was achieved. The community’s grid electricity cost
may be reduced by 10.5% compared to the case when the
RES owners would not sell their excess renewable resources.
The proposed load balancing with cost reduction optimization
method achieves a grid electricity cost reduction of 4%.

II. SYSTEM MODEL

We consider a smart grid model composed of a community
of residential energy users. The energy management within
the community is coordinated over a finite time horizon T
which is divided into several equally long time slots indexed
by t = 1, . . . , T . Let ξ be the set of market electricity prices
known ahead for each time slot of the period T: ξ = {ξ(t)}Tt=1.

Let M = {1, . . . ,M} be the set of residences from
the community that own RES and ESS. The index of a
household from this set is denoted by m. These residences
produce renewable energy and sell the excess to the other
residential energy users in the community. The per-time-slot
amounts of renewable energy produced by each household
m ∈ M are assumed to be known for the whole period T:
wm = {wm(t)}Tt=1. The electricity demand of each household
is also known for the whole period T: um = {um(t)}Tt=1.
Each household m ∈ M has a maximum ESSm capacity
Cmax
m . Thus, the maximum storing capacity in the community

is: Cmax =
∑
m∈M Cmax

m . Let P = {1, . . . , P} be the set
of residences from the community that are sole energy con-
sumers. The index of a household from this set is denoted by
p. The energy demand of each household p ∈ P is also known
for the entire period T and is denoted by: up = {up(t)}Tt=1.
The total demand of the community at each time-slot is then:
u(t) =

∑
m∈M um(t) +

∑
p∈P up(t). We assume that the

energy demand of each household is fixed over period T and
cannot be changed.

A renewable energy amount shall be saved per-time-slot
in each ESSm such that the demand of RES owner m ∈
M is satisfied during the entire period T. The set of these
amounts is denoted by: rm = {rm(t)}Tt=1. Each ESSm stores
also the amount of renewable energy that remains after selling
renewable energy to the community at each time-slot. The set
of total amounts of renewable energy existing per-time-slot in
each ESSm is devoted by: sm = {sm(t)}Tt=1.

If the energy demand of the community at certain time-
slot cannot be fulfilled by the available renewable energy
resources, the rest of the needed energy is then supplied by the
load aggregator from the main power grid. We further denote
by g the set of per-time-slot energy amounts required by the
community from the power grid: g = {g(t)}Tt=1. The set of en-
ergy amounts actually consumed from the power grid after the
load balancing optimization is denoted by: b = {b(t)}Tt=1. Part
of the energy consumed from the power grid is instantly used
for satisfying the community’s demand, while the rest is stored
in the community’s ESS for load balancing and cost reduction

purposes. These amounts are denoted by: e = {e(t)}Tt=1.
Hence, the total amount of energy stored in the community’s
ESS is composed by the stored renewable resources and also
by the power grid energy stored for balancing the load and re-
ducing the community’s grid energy costs:

∑
m∈M sm(t)+e(t)

such that 0≤
∑
m∈M sm(t)+e(t)≤Cmax.

III. RENEWABLE ENERGY INTEGRATION

In this section we propose an off-line algorithm that
schedules the integration of the renewable energy resources
produced within the community. The algorithm is performed
individually for each RES owner m ∈ M. The algorithm
first determines the proportion of the renewable energy, rm(t),
produced by the household at a time slot that must be saved
in ESSm such that the demand of that household is fulfilled
during the whole time period T. The excess renewable energy
from each time-slot is then sold to the other residences in
the community. The method encourages fast consumption of
available renewable energy. The energy demand at a time-slot
must be first satisfied by the renewable energy supplies avail-
able at that particular time-slot. If at a time-slot the renewable
energy supplies are insufficient to satisfy the demand, then the
rest of the needed energy is supplied from the power grid. The
algorithm is designed in such a way that the excess renewable
energy is stored for the shortest possible period. This prevents
the renewable energy losses that occur when storing energy.
Most storage systems are losing a small part of the stored
energy during a specific time duration.

In order to have a fair energy trade, it is assumed that each
RES owner can only sell an amount of energy proportional
to his renewable supplies available at each time-slot. For
the realisation of the energy trade, we assume that the total
energy demand of the community at every time-slot t, u(t), is
reallocated to the RES owners. The total energy demand of the
community becomes the energy demand of the RES owners
only. The new per-time-slot energy demand of a household
m ∈ M will be proportional to the available energy supplies
of that household in comparison to the total energy supply of
the community at that time slot:

µm(t) =

[
wm(t) + sm(t)∑

m∈M(wm(t) + sm(t))

]
u(t), (1)

where µm(t) represents a new notation for the energy demand.
The term inside the brackets represents the weighting factor
showing the above mentioned proportion. The difference be-
tween the available renewable energy supplies of a household
m ∈M and the energy demand at time-slot t is:

∆m(t) = wm(t) + sm(t− 1)− µm(t), t = 1, . . . , T. (2)

The energy needed by the RES owner m from the main power
grid at each time-slot in order to fulfill the allocated demand
is gm(t) and can be calculated as following:

gm(t) = |min {∆m(t), 0} |, t = 1, . . . , T. (3)

The total amount of renewable energy stored in ESSm at the
end of a time slot is equal to:
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sm(t) = min {max {∆m(t), 0} , Cmax
m } , t = 1, . . . , T. (4)

The proposed renewable energy integration algorithm involves
four steps. The algorithm starts by considering that the RES
owner may sell at each time-slot all the excess renewable
energy not needed for his own demand at that time-slot.
Consequently, in the first step the energy demand of the RES
owner is the one described in (1). The ESSm profile, sm(t),
and the amounts of energy needed from the power grid, gm(t),
during the period T are calculated using (3) and (4). If the
computed gm(t) amounts show that energy is required from
the power grid (gm(t) > 0 for any t = 1, . . . , T ), then the
algorithm proceeds to the following step.

The second and third steps involve only the RES owner’s
personal demand. In the second step we recalculate using (3)
the amounts of energy, gm(t), needed from the power grid by
the RES owner alone in order to satisfy his personal demand,
um(t). These amounts are recalculated at every time-slot using
the storage values sm(t) determined at the previous step. Here
the energy demand of the RES owner is µm(t) = um(t). If
at any time-slot t the RES owner would need to purchase
electricity from the power grid in order to fulfill his own
personal demand (gm(t) > 0, at any t = 1 . . . T ), then the
algorithm proceeds to the third step.

In the third step we go through all time-slots at which the
RES owner requires energy from the power grid one by one:
y = argt{gm(t) > 0}Tt=1. For each such time slot t ∈ y, we
check for the excess amounts of renewable resources existing
at previous time-slots, t−1, . . . , 1. We save in storage one by
one the amount of the renewable energy available at previous
time-slots, starting with t − 1, until the consumption of the
owner at each time slot t ∈ y is satisfied. These amounts, rm,
would be otherwise sold to the other energy consumers in the
community. In an ideal case the amount of renewable energy
saved in ESSm is equal to the amount required by household
m ∈ M from the power grid:

∑T
t=1 rm(t) =

∑T
t=1 gm(t).

This ideal case cannot be accomplished all the time since
it depends on the production of renewable resources at each
time-slot and the ESSm capacity.

The fourth step recalculates the ESSm profile sm(t) and
total amount of energy needed from the power grid by the
community at each time-slot, g(t). A complete description of
the renewable integration method is given in Algorithm 1.

IV. LOAD BALANCING WITH PRICE REDUCTION

An important incentive for the load aggregator to participate
in the renewable energy trade among residential users is the
need for a balanced power grid load profile. In order to obtain
constant grid consumption over time for the community, we
propose a GP based optimization method where the objec-
tive is given by the Cobb-Douglas production function from
economics [9]. A production function can be used to model
how to combine different inputs to produce certain levels of
outputs. In our problem the input is given by the per-time-slot
cost of electricity required from the main power grid: ξ(t)g(t).
The objective function of our problem is modeled as:

Algorithm 1 Renewable energy integration

Input : Cmax
m , T, wm, u, um;

Output : g, sm;
Initialization : Set to zero gm, sm, rm, σ;
Step 1) Calculate gm, sm using (3), (4) and µm in (1);

if gm(t) = 0, for all t = 1 . . . T then exit algorithm;
Step 2) Recalculate gm using (3), sm calculated in Step 1)
and µm = um;

if gm(t) = 0, for all t = 1 . . . T then exit algorithm;
Step 3) Save renewable resources for the RES owner:

y=argt{gm(t) > 0}Tt=1;
for i=1 to size(y) do:

j = y(i); σ = gm(j) + sm(j);
repeat: j=j-1

Calculate ∆m(j) using (1) when µ(j) = um(j)+rm(j);
if ∆m(j) > 0

rm(j) = rm(j) + min{∆m(j), σ};
σ = σ −min{∆m(j), σ};

end if
until: σ = min {∆m(j), σ} or j=1;

end for
Step 4) Calculate final grid requirement and storage profile
g, sm using gm computed in Step 2) and µm in (1):

for t=1 to T do:
g(t) = |min{

∑
m∈M[∆m(t)−

∑t
k=1(rm(k)−gm(k))], 0}|;

sm(t)=min{max{∆m(t)−
∑t
k=1(rm(k)−gm(k)), 0}, Cmax

m }.
end for

max
b

T∏
t=1

bαt(t), (5)

where αt =

∑T

j=1,j 6=t
ξ(j)·g(j)

(T−1)
∑T

t=1
ξ(t)·g(t)

represents the elasticity pa-

rameter of the Cobb-Douglas production function. Because our
goal is to obtain constant consumption from the power grid,
the amount of energy actually consumed from the power grid
should be different from the amount of energy required from
the power grid. In order to obtain a constant grid consumption
b(t) over time t=1. . . T, the elasticity parameters must satisfy:∑T
t=1 αt = 1. Therefore, each one of these terms is inversely

proportional to the cost of required energy at a certain time-
slot, ξ(t)g(t), scaled to the total cost of the required energy
from the power grid. The set of constraints employed in our
load balancing and consumption cost reduction problem are:

b(t) ≥ max {g(t)− Cmax −
∑
m∈M sm(t), 0}; (6)

b(t) ≤ Cmax + g(t); (7)

e(t) = e(t− 1) + b(t)− g(t); (8)

0 ≤ e(t) ≤ Cmax −
∑
m∈M sm(t); (9)∑T

t=1 ξ(t)b(t) ≤
∑T
t=1 ξ(t)g(t); (10)∑T

t=1 b(t) =
∑T
t=1 g(t); (11)

where (6) - (9) are computed for all t=1,. . . , T.
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Inequations (6) and (7) define the power grid consumption
constraints. The per-time-slot grid consumption is lower lim-
ited by the amount of electricity required by the community
from the power grid at that time-slot and that cannot be
satisfied by the amount of grid energy stored in the ESS (6).
The maximum amount of energy from the grid that exists
in storage at a certain time slot is: Cmax −

∑
m∈M sm(t).

Inequation (7) states that the energy consumed at each time
period cannot be greater than the capacity of the storage plus
the energy required from the power grid at that time-slot. In
(8) and (9) the constraints for the grid energy saved in storage
at each time-slot are presented. Equation (8) indicates the grid
electricity amount saved in storage at each time-slot, e(t). This
value is calculated based on the electricity amount existing
in storage from the previous slot, e(t-1), the amount actually
consumed from the grid at that time-slot, b(t), and the required
grid energy, g(t). Equation (9) states that the grid energy stored
at each time-slot is lower-limited by zero and upper-limited by
the total ESS capacity, not needed for storing the renewable
energy. Equation (10) shows the cost reduction constraint. We
also want to take advantage of the fluctuations of electricity
prices and obtain a consumption profile with a lower cost than
that of the actual energy requested from the power grid. In
(11) it is shown that the total balanced energy that shall be
consumed from the power grid over the period T must be equal
to the total energy required from the power grid.

Because the objective function of our problem is of mono-
mial type, we shall formulate our optimization problem as a
GP [11]. The constraints described above are in a linear form.
In order to transform these constraints in GP form they must
be written as posynomial or monomial inequations. Constraints
(6) and (7) may be rewritten as:

b(t)−1[max {g(t)− Cmax −
∑
m∈M sm(t), 0}] ≤ 1; (12)

b(t)[Cmax + g(t)]−1 ≤ 1. (13)

For the energy storage constraints we substitute (8) in (9) and
obtain: 0 ≤ e(t − 1) + b(t) − g(t) ≤ Cmax −

∑
m∈M sm(t).

The amounts of energy stored from previous time-slots are
computed as: e(i − 1) = e(i − 2) + b(i − 1) − g(i − 1), for
i = 2, . . . , t. Then, by setting the initial amount of stored
energy to zero, e(0)=0, we obtain: 0 ≤

∑t
i=1(b(i)− g(i)) ≤

Cmax −
∑
m∈M sm(t), for all t = 1, . . . , T . Rewriting the

upper inequality in terms of balanced consumption we obtain
the following upper limiting constraint for the storage:

[
∑t
i=1 b(i)][C

max−
∑
m∈M sm(t)+

∑t
i=1 g(i)]−1 ≤ 1. (14)

The lower limiting constraint of the storage can be written
in terms of balanced grid consumption as:

∑t
i=1 g(i) +∑t−1

i=1 b(i) ≤ b(t), for all t = 1, . . . , T . By substituting the
left-hand side of this inequality with (14), we obtain the lower
limiting value:

[max {g(t)− Cmax−
∑
m∈M sm(t− 1), 0}]b(t)−1≤ 1. (15)

Finally constraints (10) and (11) can be rewritten as:

[
∑T
t=1 ξ(t)b(t)][

∑T
t=1 ξ(t)g(t)]−1 ≤ 1; (16)

[
∑T
t=1 b(t)][

∑T
t=1 g(t)]−1 ≤ 1. (17)

The solution of the optimization problem can be obtained
through standard interior point algorithms [11].

V. SIMULATION EXAMPLES

In this section we present numerical results that demonstrate
the performance of the proposed method. For simulations
we assumed the case of a smart grid community composed
of M=4 residences owning RES and ESS and P=6 other
residential households that are sole energy consumers. The
time framework is considered to be T=24 hours, divided into
hourly time-slots. The pricing data used in the simulations
is actual pricing data of May 2013, taken from the Finland
Nord Pool Spot database [12]. We simulated the renewable
energy production profiles according to the model presented
in [13] using true hourly temperature, air pressure and wind
speed data from the Finnish Meteorological Institute database
for May 2013 [14]. The 24 hours energy demands of the
households were simulated with the load modeling framework
proposed in [15]. We considered households of two to five in-
habitants. For solving the load balancing optimization problem
we used the CVX package for convex optimization [16].

The results of the proposed demand response strategy are
illustrated in Fig.1. Fig.1(a)-(f) shows the simulation results
for May 17th. We considered ESSm capacities of Cmax

m =
{5kWh, 8kWh, 5kWh, 8kWh}. Fig.1(a) presents the cumu-
lated 24 hours wind energy production of all residences
owning RES. Fig.1(b) shows the total 24h energy demand
profile of the community, while Fig.1(c) shows the per-time-
slot amounts of energy needed by the community from the
power grid, g, as calculated by the renewable integration
method. Fig.1(d) depicts the amounts of total renewable energy
sold by the RES owners to the rest of the residences in the
community. The cumulated ESS profile of the community is
presented in Fig.1(e). Here we can observe the total amounts of
renewable energy saved for fulfilling the energy requirements
of the RES owners, the amounts of renewable energy that
are stored and then sold and the amounts of grid energy that
are stored for load balancing and cost reduction purposes.
The community’s balanced grid consumption profile is shown
in Fig.1(f). Part of this energy is instantly consumed and
the rest is saved in storage as shown also in Fig.1(e). The
efficiency of the proposed load balancing method depends on
the available ESS capacity. To measure the efficiency of the
proposed load balancing method we calculated the PAR for
different Cmax values. In Fig.1(g) we can see the variation
of the PAR as a function of the total ESS capacity in the
community. The PAR values improve as the capacity increases,
obtaining PAR values of 1.04 for Cmax ≥ 22kWh. Fig.1(h)
shows the PAR values of the grid energy requirements in
comparison to those of the balanced grid consumption for each
day of May 2013. In the majority of the cases we obtained
highly balanced grid consumption with PAR values very close
to 1. The PAR was reduced on average by 52%. Fig.1(i)
shows the daily cumulated electricity cost savings for the
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Fig. 1: Renewable energy integration, load balancing and cost reduction. (a): the community’s 24-hour wind energy production profile. (b): the total energy demand of the community.
(c): the profile of the required grid energy. (d): the total amount of renewable energy sold per time-slot.(e): the community’s total ESS profile including wind energy and grid energy
stored for load balancing purpose. (f): the balanced grid consumption profile.(g): the variation of the PAR as a function of Cmax. For Cmax above 22kWh the PAR values are
1.04. (h): the PAR values of the grid demand and of the balanced consumption for 31 days. (i): the cumulated cost savings over 31 days.

community for May 2013. First plot shows the daily cumulated
cost savings obtained when using the proposed energy trade
strategy together with the load balancing with cost reduction
optimization. The 31-day grid energy cost before the load
balancing optimization was:

∑T
t=1 ξ(t)g(t)=70.4 e, while

after performing the load balancing optimization the cost was∑T
t=1 ξ(t)b(t)=67.5 e. The cost reduction obtained through

the load balancing optimization is about 4%. The second plot
shows the cost savings of the proposed energy trading method
in comparison with the case when the RES owners would
use their ESS to perform individual cost reduction and not
sell the excess renewable resources. In this case we denote
by b∗m(t) the grid energy needed by each RES owner. The
community’s cost for energy purchased from the grid would
be
∑T
t=1[

∑
m∈M ξ(t)b∗m(t) +

∑
p∈P ξ(t)up(t)]=75.5 e. The

proposed energy trading method reduces this cost by 10.5%.

VI. CONCLUSION

In this paper we proposed a novel demand response strategy
for energy management within a smart-grid community of
households. Some households in the community own RES and
ESS and sell their excess renewable energy to the residences
that need energy. The proposed strategy comprises an off-line
algorithm that schedules the renewable energy integration. The
algorithm facilitates fast consumption of renewable resources
and offers a way to fairly trade the renewable energy. The
method also comprises a GP based optimization method
that uses the ESS for balancing the grid energy needed by
the community and for reducing the grid consumption cost.
Simulation results showed that the proposed method balances
the load by reducing the PAR values by 52%. The energy
trading method may provide a cost reduction of about 10%
for the gird energy bought by the community, while the load
balancing optimization may provide a cost reduction of 4%.
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