
Multi-Image Super-Resolution for Fisheye Video

Sequences Using Subpixel Motion Estimation

Based on Calibrated Re-Projection

Michel Bätz, Andrea Eichenseer, and André Kaup

Multimedia Communications and Signal Processing

Friedrich-Alexander University Erlangen-Nürnberg (FAU), Cauerstr. 7, 91058 Erlangen, Germany

Email: {michel.baetz, andrea.eichenseer, andre.kaup}@fau.de

Abstract—Super-resolution techniques are a means for recon-
structing a higher spatial resolution from low resolution content,
which is especially important for automotive or surveillance
systems. Furthermore, being able to capture a large area with
a single camera can be realized by using ultra-wide angle
lenses, as employed in so-called fisheye cameras. However, the
underlying non-perspective projection function of fisheye cameras
introduces significant radial distortion, which is not considered
by conventional super-resolution techniques. In this paper, we
therefore propose the integration of a fisheye-adapted motion
estimation approach that is based on a calibrated re-projection
into a multi-image super-resolution framework. The proposed
method is capable of taking the fisheye characteristics into
account, thus improving the reconstruction quality. Simulation
results show an average gain in luminance PSNR of up to 0.3 dB
for upscaling factors of 2 and 4. Visual examples substantiate
the objective results.

I. INTRODUCTION

Increasing the spatial resolution is desirable in many ap-

plications such as automotive or video surveillance systems

where it is very important to be able to detect faces, license

plates, or street signs. The utilization of camera sensors with

an increased resolution is one way to obtain images with a

higher resolution. These sensors, however, are more expensive,

require a larger amount of memory for storing the images, and

consume more energy which is especially critical in remote or

mobile systems. As an alternative, so-called super-resolution

(SR) approaches can be employed to obtain a high resolution

(HR) image from a low resolution (LR) input. SR methods

can generally be divided into two groups: single-image SR

(SISR) using only a single input image and multi-image SR

(MISR) exploiting the temporal correlation of several adjacent

frames of a video sequence. In principle, MISR approaches

are capable of recovering more detail due to the incorporation

of additional information from adjacent frames. However, the

reconstruction quality of MISR methods highly depends on an

accurate motion estimation. Moreover, it is necessary that a

subpixel motion is present in the sequence for MISR methods

to perform well at all [1].

In the literature, many SISR approaches exist that range

from simple edge-directed interpolation [2] to more complex

example-based methods trying to establish a relationship be-

tween HR and LR patch pairs [3], [4], [5], [6]. Likewise, a

considerable number of MISR methods can be found in the

Figure 1. Translational motion as captured by both a conventional perspective
camera (left half) and by a fisheye camera (right half).

literature [1]. These techniques range from spatial and fre-

quency domain approaches to arbitrarily complex deterministic

or stochastic regularization approaches [7], [8]. Additionally,

some methods do not need an explicit motion estimation at

all [9] or combine both SISR and MISR approaches to form

a hybrid solution [10].

The second important aspect in video surveillance or auto-

motive systems is the desire of being able to capture the largest

possible area with a single camera. Typically, this is realized

by employing so-called fisheye cameras which make use of

ultra-wide angle lenses that are capable of capturing a field of

view (FOV) of 180 degrees or even more [11]. Several pro-

cessing strategies that make use of fisheye cameras have been

presented in the literature [12], [13], especially for driver’s

assistance systems or surveillance cameras. However, fisheye

cameras introduce a large radial distortion into the images

as the underlying projection function is not perspective. This

underlying mapping is typically not considered for processing

techniques such as motion estimation (ME). Fig. 1 illustrates

how a translational motion is captured by a conventional

camera (left half) and by a fisheye camera (right half). It is

evident that a conventional ME based on block-matching is not

capable of finding good candidate blocks as radial distortion

is not taken into account. In [14], a hybrid fisheye-adapted

ME technique is presented that uses the equisolid projection

model to improve the ME itself. However, a real fisheye

camera does not necessarily follow a perfectly equisolid

model, making a calibration necessary as elaborately analyzed

in [15]. In this paper, we therefore propose the integration of

that calibrated hybrid ME approach into a multi-image super-

resolution framework for fisheye video sequences and extend

the approach to also consider subpixel shifts. The proposed

SR method is capable of taking the characteristics of fisheye

images into account and hence improves the reconstruction
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Figure 2. Proposed multi-image super-resolution framework using a subpixel-accurate hybrid motion estimation technique (sCHME+, red/green) based on
calibrated re-projection. The workflow can be divided into 3 major parts: registration (blue), interpolation, and restoration.

quality. Moreover, we also analyze the effects of a varying

number of utilized input frames on the reconstruction quality.

The remainder of the paper is structured as follows. In

Section II, the employed MISR approach is briefly described.

The proposed subpixel-accurate fisheye ME technique applied

for the registration is given in Section III. Section IV presents

the simulation results and Section V concludes this paper.

II. MULTI-IMAGE SUPER-RESOLUTION APPROACH

As mentioned in the previous section, multi-image SR

methods try to reconstruct an HR image from several LR

input images. The observation model [1] relating the desired

HR image IHR to the corresponding k-th observed LR video

frame ILR,k can basically be formulated as

ILR,k = DBMkIHR + nk, for 1 ≤ k ≤ M. (1)

The matrices D, B, and Mk denote the downsampling,

blurring, and motion between the frames, respectively. The

vector nk represents the noise and M expresses the number

of LR images.

To obtain a super-resolved image, the non-uniform in-

terpolation approach mentioned in [1] is a straightforward

solution. The basic workflow of such an interpolation-based

SR technique is comprised of three major steps: registration,

interpolation, and restoration. These steps can be seen in Fig. 2

where the registration is highlighted in blue.

In the registration step, a motion estimation between all uti-

lized LR frames ILR[p̃, t] needs to be performed. The LR pixel

position is denoted by p̃ = (m̃, ñ), the point in time is given

by t. In this paper, the employed auxiliary LR frames are sym-

metrically chosen around the LR frame to be super-resolved:

t ∈ T = {τ − ⌈(N − 1) /2⌉, . . . , τ + ⌊(N − 1) /2⌋}. The

number of utilized frames including the central frame at

t = τ that is to be super-resolved is represented by N . All

pixels are subsequently compensated into a common floating

point accurate mesh ILR,f(p̃f) with p̃f being the floating

point accurate positions corresponding to the target LR frame.

For the registration of real-world video sequences containing

both global and local motion, a multitude of approaches

can be applied. We chose a block-based motion estimation

method [16] as a basis for further adaptations towards the

underlying fisheye characteristics. Moreover, to increase the

robustness of our approach against inaccurate motion vectors

(MV), both a forward and backward ME is computed between

the LR frames. This procedure then allows for a cross-check
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Figure 3. Projection functions of radius r over incident angle θ.

between the MVs as mentioned in [10] and thus successfully

removes coarse outliers in the motion vector field (MVF).

In the interpolation step, the non-uniformly sampled pixels

are resampled onto the HR image grid using the well-known

Delaunay triangulation and a subsequent cubic interpolation.

The result is the interpolated image ISR,int[p] with p = (m,n)
denoting the HR pixel positions. Finally, as a means of image

restoration, Lucy-Richardson deconvolution [17] is used.

As a subpixel-accurate traditional ME technique (sTME)

based on block matching does not consider the fisheye

characteristics, it is likely to produce reconstruction artifacts

due to incorrect motion vectors. We therefore propose to

apply a subpixel-accurate and calibrated hybrid ME technique

(sCHME+) for fisheye video sequences to the registration step

in MISR. The details of the proposed sCHME+ approach are

presented in the next section.

III. CALIBRATED HYBRID MOTION ESTIMATION

Building upon [14] where a hybrid fisheye motion estima-

tion technique is proposed that combines traditional block-

based ME with a fisheye-adapted ME based on the equisolid

fisheye model [11], we also make use of such a hybrid

approach. However, instead of using a perfect fisheye model

which does not necessarily hold true for real-world fisheye

lenses, a calibration is applied to find the mapping between

the incident angle θ and the radius r as also shown in [15].

For the calibration, the OCamCalib toolbox by Scaramuzza

et al. [18] is used, yielding the polynomial p that relates the

radius in the fisheye domain rfe to the corresponding incident

angle θ. Mathematically, this polynomial can be written as

p(θ) = anθ
n + an−1θ

n−1 + . . .+ a1θ + a0 =

n
∑

i=0

aiθ
i, (2)

where ai denote the coefficients of the polynomial and n
represents its order. Fig. 3 illustrates the relationship between

2016 24th European Signal Processing Conference (EUSIPCO)

1873



TME

sTME

CME+

sCME+

SSD Comparison
MVT,int

MVC,int

MVT,sub

MVFC,sub

SSDT

SSDC

MVFhyb

sCHME+

ILR,ref

ILR,cur,blk

Figure 4. Proposed sCHME+ approach in detail. The upper box (red) depicts
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Figure 5. Workflow of the calibrated fisheye approach CME+. P refers to the
pixel positions and LUT is a lookup table relating the radius r to the incident
angle θ. sCME+ works analogously yielding MVC,sub and MVFC,sub.

radius r and incident angle θ for the perspective, equisolid,

and calibrated case. From these curves, it is evident that a

perspective lens can only capture a limited FOV.

Additionally, due to the need for subpixel-accurate MVs

in multi-image super-resolution, we extend the hybrid motion

estimation scheme by a hierarchical subpixel step. The basic

workflow of the subpixel-accurate calibrated hybrid motion

estimation (sCHME+) is depicted in Fig. 4. The red box con-

sists of a traditional motion estimation (TME) based on block-

matching followed by a subpixel-accurate extension (sTME)

around the best integer motion vector MVT,int to obtain

a subpixel-accurate motion vector MVT,sub. The green box

contains the calibrated fisheye-adapted ME (CME+) followed

by its corresponding hierarchical subpixel extension (sCME+)

around the best integer MV candidate MVC,int, which then

yields the pixelwise MV field MVFC,sub. The sum of squared

differences (SSD) between the current block and the motion

compensated blocks obtained by applying both MVT,sub and

MVFC,sub are then compared and the best hybrid solution

MVFhyb is found by selecting the path corresponding to the

smaller SSD value. If MVT,sub is chosen, it is copied to each

pixel position of the block to create a pixelwise MV field.

In the following, the actual CME+ approach, which rep-

resents the core of the ME approach, is explained in detail.

The principle workflow for evaluating one MV candidate is

illustrated in Fig. 5. First, the pixel positions of the current

block Pcur,blk are extracted for further processing. These po-

sitions are subsequently converted from Cartesian coordinates

to polar coordinates, providing the radius in the fisheye domain

rfe of each pixel. From the polynomial p obtained from the

calibration, a lookup table (LUT) is created which maps rfe
to the corresponding incident angle θ. The perspective radius

rpp can then be calculated according to the pinhole model as

rpp = ftan(θ), with θ = p−1(rfe), (3)

where f denotes the focal length and θ is obtained from the

LUT. In the perspective domain, the actual motion vector

candidate addition is conducted as usual on the Cartesian

coordinates corresponding to the polar coordinates (rpp, ϕ).
To perform the SSD comparison, the shifted positions have

to be re-projected into the fisheye domain as in [14]. To that

end, the shifted perspective radius r′pp has to be mapped to the

incident angle θ by use of the inverse pinhole model followed

by the mapping of the LUT to obtain r′fe. This re-projection

can be written as

r′fe = p(θ), with θ = arctan

(

r′pp
f

)

. (4)

Subsequently, the actual SSD comparison can be performed

using the pixel values of ILR,ref at the shifted positions Pref

and the pixel values of ILR,cur,blk at the original positions

Pcur,blk. The motion vector candidate is stored in MVC,int.

The actual shifts, however, are different for each pixel due

to the nature of the used projections and can be obtained by

simply subtracting the positions Pcur,blk from Pref to obtain

the MV field MVFC,int. This procedure has to be repeated

until the best MV is found. Analogously, sCME+ yields the

subpixel-accurate MVC,sub and MVFC,sub. The pixelwise

shifts MVFC,sub are then further used for the super-resolution.

Note that the whole projection and re-projection step is only

performed on the pixel positions themselves and hence does

not require any interpolation of the luminance values.

Due to the nature of the tangent, however, radii corre-

sponding to an angle larger than 90 degrees cause a problem,

i. e., generate a negative radius rpp. We therefore propose a

compensation for ultra-wide angles that requires three steps.

The first necessary modification needs to be conducted during

the motion vector candidate addition. For all positions that

correspond to an angle larger than 90 degrees, the shifts need

to be multiplied by −1. Mathematically, this is represented by

mcand =

{

(−∆xpp,−∆ypp), ∀rpp < 0

(∆xpp,∆ypp), otherwise
, (5)

where (∆xpp,∆ypp) denotes the Cartesian representation of

the MV candidate mcand. As a second modification for the

ultra-wide angle compensation, the angle of the shifted polar

coordinates ϕ′ has to be mirrored according to

ϕ̂′ = ϕ′ − π, ∀rpp < 0, (6)

where ϕ̂′ represents the manipulated polar angle. Finally, for

all re-projected radii r′fe corresponding to θ > 90◦, we add

twice the distance to the radius corresponding to 90◦, namely

rfe,90, as

r̂′fe = r′fe + 2(rfe,90 − r′fe), ∀rpp < 0, (7)
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Table I
AVERAGE PSNRY RESULTS (IN DB) FOR BOTH N=7 AND N=15 AND A RESOLUTION ENHANCEMENT OF U=2 AND U=4.

Sequence Motion Type Frames
2× Upscaling 4× Upscaling

Bicubic SR using sTME SR using sCHME+ Bicubic SR using sTME SR using sCHME+
N=1 N=7 N=15 N=7 N=15 N=1 N=7 N=15 N=7 N=15

LibraryA Camera Zoom #11-40 34.27 35.42 35.85 35.52 36.03 28.83 29.08 29.56 29.23 29.71

LibraryC Camera Pan #11-40 35.65 36.94 36.95 37.36 37.29 30.32 31.67 31.80 31.97 32.06

LibraryE Camera Shaky #11-40 34.38 36.59 36.67 36.86 37.14 28.99 29.47 30.04 29.70 30.23

LectureA Camera Pan #11-40 37.03 37.78 37.86 37.84 37.87 32.18 32.67 32.83 32.80 32.93

LectureB Camera Translation #11-40 33.20 34.20 34.16 34.44 34.37 28.48 29.07 29.22 29.28 29.43

TestchartB Object Translation #11-40 33.84 35.01 35.36 35.36 35.66 27.82 27.93 28.19 28.06 28.36

AlfaC Object Shaky #11-40 33.77 36.10 36.17 36.68 37.05 27.73 28.95 29.36 29.51 30.32

CarparkA Object Complex #11-40 32.27 32.76 32.41 32.78 32.42 27.94 27.96 27.75 28.00 27.81

Average gain over bicubic −− 1.30 1.38 1.55 1.68 −− 0.56 0.81 0.78 1.07

Frame distance 1 Frame distance 4 Frame distance 7

Figure 6. ME decision masks for different frame distances. Blocks where
sCME+ is selected are depicted in green, while those where sTME is chosen
are given in red. Subpixel-accurate MVs are marked with darker colors.

where r̂′fe denotes the manipulated radius. These three adapta-

tions lead to a correct motion estimation for ultra-wide angles.

IV. SIMULATION RESULTS

In this section, the effects of integrating the proposed

sCHME+ approach into a multi-image SR framework are

analyzed with regard to objective quality and visual examples.

The objective quality is measured by the luminance PSNR that

is evaluated inside the 185 degree circle, which corresponds to

the camera FOV. That way, the black regions not containing

any relevant information are neglected. For this paper, the

following eight real-world fisheye video sequences are taken

from the fisheye data set provided in [19]: LibraryA, Li-

braryC, LibraryE, LectureA, LectureB, AlfaC, TestchartB, and

CarparkA. For the purpose of calibration, the checkerboard

images Calibration also available in the above-mentioned data

set are used. These sequences all have an original resolution

of 1150 × 1086 and show different types of motion and

content. For further processing, these sequences were cropped

in horizontal dimension and zero-padded in vertical dimension

to form a spatial resolution of 1088 × 1088. For the purpose

of simulation, LR sequences were created in order to analyze

resolution enhancement factors U of 2 and 4. To that end,

a degradation by a Gaussian blur of size 3 × 3 (5 × 5) and

corresponding variance 0.75 (1.0) as well as a downsampling

by a factor of 2 (4) in each dimension was applied to the

original sequences. The SR results were calculated for 30
consecutive frames of each video sequence with a number

of utilized frames N ranging from 3 to 15. For ME itself, a

block size of 8 and a search range of 32 was chosen.

As a first evaluation on how well the proposed ME tech-

nique performs, the block decision on whether a traditional
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Figure 7. Average luminance PSNR gains for SR using sTME (blue) and
for the proposed SR using sCHME+ (red) compared to bicubic interpolation
realizing an upscaling of both U=2 and U=4.

integer MV (red) / subpixel MV (dark red) or a fisheye integer

MV (green) / subpixel MV (dark green) is chosen as the best

candidate is illustrated in Fig. 6 for the sequence LibraryC

and different frame distances. It is evident that the majority

of the blocks is chosen from the fisheye path indicating that

the fisheye-adapted methods performs well. The larger the

distance to the reference frame, the more traditional MVs are

selected near higher values of θ. The reason for that is an

insufficient search range in the perspective domain as pixel

positions spread further away.

For the actual SR tests, the following three reconstruction

methods are compared to each other: bicubic interpolation,

SR using sTME, and the proposed SR using sCHME+. The

average luminance PSNR gains over all frames and sequences

compared to bicubic interpolation for both U=2 and U=4 as

well as a varying number of utilized frames N are depicted in

Fig. 7. As can be seen, the proposed method can achieve a gain

for all combinations of U and N . The corresponding PSNR

values for all sequences, upscaling factors, and N=7 as well

as N=15 are summarized in Table I. For U=2, the proposed

method can achieve average gains over SR using sTME of

0.25 dB and 0.30 dB using N=7 and N=15, respectively.

For U=4, an average gain of 0.22 dB and 0.26 dB is obtained.
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OriginalOriginalOriginal BicubicBicubicBicubic
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30.21 dB
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Sequence AlfaC (frame 11) Sequence LibraryC (frame 11) Sequence LectureB (frame 11)

Figure 8. Visual quality comparison of image detail examples for three sequences using an upscaling of factor 4 and 15 utilized frames. Areas of interest
are highlighted in red (best viewed enlarged on screen).

The aforementioned objective results are substantiated by

the visual results for a resolution enhancement factor of 4 and

N =15 and are illustrated in Fig. 8. Image detail examples

for the three sequences AlfaC, LibraryC, and LectureB are

presented and areas of interest are highlighted in red. It is

evident that reconstruction artifacts arising from an incorrect

motion estimation are successfully reduced, increasing the

legibility in the left example and removing disturbing artifacts

in the middle and right examples.

V. CONCLUSION

In this paper, a multi-image SR approach for fisheye video

sequences was presented. Instead of simply employing a

traditional block-based ME technique, we proposed to use a

calibrated hybrid ME that takes the fisheye characteristics into

account and hence is capable of reducing artifacts from an

incorrect motion estimation. Our proposed method was eval-

uated for a varying number of utilized frames and upscaling

factors of 2 and 4. It was shown that our method achieves

an average gain in luminance PSNR of up to 0.3 dB for

both upscaling factors. Furthermore, it successfully reduces

artifacts and improves the reconstruction quality. Future work

will include employing the proposed strategy on coded video

sequences, developing an adaptive motion search to better cope

with wider angles, and evaluating other ME and SR methods.
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