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Abstract—We propose a supervised classification and di-
mensionality reduction method for hyperspectral images. The
proposed method contains a mixture of probabilistic principal
component analysis (PPCA) models. Using the PPCA in the
mixture model inherently provides a dimensionality reduction.
Defining the mixture model to be spatially varying, we are also
able to include spatial information into the classification process.
In this way, the proposed mixture model allows dimensionality
reduction and spectral-spatial classification of hyperspectral im-
age at the same time. The experimental results obtained on real
hyperspectral data show that the proposed method yields better
classification performance compared to state of the art methods.

Index Terms—hyperspectral image, probabilistic principal
component analysis, dimensionality reduction, mixture models.

I. INTRODUCTION

Hyperspectral imaging has become one of the main research
topics of remote sensing in recent years. A significant appli-
cation of hyperspectral imaging is the identification of land
cover areas via classification. The rich content of hyperspectral
data allows the recognition and classification of forests, urban
areas, crop species and water resources.

In this study, the aim is to predict the class labels of the
pixels in a hyperspectral image. The proposed method consists
of a Gaussian mixture model (GMM) whose parameters are
defined by probabilistic PCA model. Considering that a land
cover area consists of several pixels, it is natural that the
neighboring pixels are most likely in the same class. Along
with the mixture model, we use a random field model to
include the neighborhood information by defining the mixture
proportions to be spatially varying. Thus a segmentation map
is also obtained when the pixels in the image are classified
using our proposed mixture model. The proposed mixture
model allows dimensionality reduction and spectral-spatial
classification of hyperspectral image at the same time.

A common problem encountered in the supervised classifi-
cation of hyperspectral images is that the length of the feature
vectors, which is actually the number of spectral bands, is big,
while the size of samples in the training set is small which
causes an under-determined parameter estimation problem for
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GMMs. The most common approach is the application of
PCA before classification to reduce the dimension of spectral
bands as proposed in [12]. In [1] a dimensionality reduction
step is applied before training a GMM. In [2] the number of
parameters to be estimated is decreased by defining constraints
on the covariance matrices of GMM. In [3] a Bayesian
GMM is proposed in order to overcome the under-determined
problem and this model also includes a spatial regression
model over the class labels that was used in [4] and [5].
This regression model is based on the assumption that the
mixture model is not stationary over space, i.e. that its mixture
proportions are varying over space.

Non-stationary mixture models have been used in several
works for image segmentation and classification. For instance,
in [6], [7], [8] and [9] the non-stationary mixture model is
obtained using a Markov Random Field prior. In [10] and
[11] a latent Gaussian random field was proposed where the
mixture proportions were related to the class labels using a
multinomial logistic function.

One of the most common methods for dimensionality re-
duction is the principal component analysis (PCA). In [12] the
spectral bands in the data obtained by two different sensors
were analyzed using PCA, and the classification performance
using only the significant bands was investigated. In [13] a
method was proposed in which the hyperspectral image is
divided into pieces spectrally or spatially, and PCA is applied
to each piece separately, and pieces are patched up again in
order to go under supervised classification.

Although PCA is not essentially a probabilistic approach,
in [14], it is shown that its probabilistic derivation is possible.
The approach proposed in [14] is called PPCA and is based
on a latent variable model. In this work we use PPCA for
dimensionality reduction.

In [15] PPCA is used for feature extraction of hyperspec-
tral images in a supervised (SPPCA) and semi-supervised
(S2PPCA) setting. In SPPCA only the labeled samples are
used, and in S2PPCA the unlabeled samples are utilized as
well. The extracted features are used for classification with
nearest neighbor and support vector machine classifiers. In
these classifications only the spectral information is used.

The rest of this paper is organized as follows: In Section II,
GMM, PPCA and the spatial regression model are described.
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In Section III test results obtained using various hyperspectral
image datasets are given. Section IV consists of discussions
and conclusion.

II. PROPOSED METHOD

A pixel is denoted by the vector s,, of length L in a hyper-
spectral image which has N pixels and L spectral bands. Each
element of a pixel vector comes from a spectral band, therefore
a hyperspectral image can be considered as a collection of L
different images.

In this study, the hyperspectral image is modeled as a
mixture of Gaussians, therefore each pixel is assumed to be
generated from a different multivariate Gaussian distribution.
As opposed to the similar works that use GMM, we use a
PPCA model for each class in order to estimate the parameters
of Gauss distribution. This model also involves dimensionality
reduction for which PCA is mainly used. In addition to spectral
modeling, an auto-logistic regression model is used in order
to take advantage of pixel neighborhoods for classification.

A. Gaussian Mixture Model

We assume that a pixel vector is generated from one of K
multivariate Gaussian distributions each of which represents a
class. Probability of a pixel can be written as follows:

K
p(sn) = > wn kN (sn|my, Ti) (1)

k=1

In this equation A/(-) is the Gaussian distribution, my, is the
mean of the kth class, and ;. is its covariance matrix. The
parameter wy, ; is the mixture proportion of kth class. In this
model mixture proportions are different for each pixel, thus
spatial information can be used in the model.

Parameters m; and X; must be estimated for each class
using the training data. In this study, we use PPCA [14]
for parameter estimation. This method allows dimensionality
reduction and parameter estimation of a Gaussian distribution
by a latent variable model. Thus, a GMM is trained by
applying PPCA to each class in the training set.

B. Probabilistic Principal Component Analysis

PCA is a widely used statistical method in data processing.
It is an orthogonal transform that projects the data into a space
where the variance is maximum. PCA is generally used as
a dimensionality reduction method since only the first few
principal components contain most of the variance in the data.

In [14], it was shown that PCA can be performed with
a probabilistic approach. In this approach a latent variable
model is used and model parameters are estimated using the
maximum likelihood estimation method in order to obtain the
principal axes. This latent variable model aims at finding the
relation between an observation vector s,, of length L and
a latent variable vector x,, of length ¢ while ¢ < L. With
the assumption that this relation is linear, we can write the
following equation:

Sn = WX, +my + € 2

where €}, is a zero-mean Gaussian random vector with covari-
ance matrix 021,. Here matrix W, of size L x ¢ is the relation
between the observed and latent variables. m; is the mean,
and €, is the error, or additive noise.

Prior probability of x, is a zero-mean Gaussian that is
p(x,) = N(0,1,), and I, is the identity matrix of size q.

It can be seen that p(s,|x,) is also Gaussian under the
assumption that the additive noise €;, is Gaussian:

P(Sn|Xn) = N(kan + my, U}%IL) (3)

As shown in [14], marginal probability of s, is also a
Gaussian:

p(sn) = / D(Snlxn)p(xn)dxn = N(mp, Zp). @)

The Gaussian distribution in the above equation constitutes a
class in the mixture model. In [14] the covariance matrix is
defined as X, = WkW£ + a,%I 1. By these definitions, the
log-likelihood function can be written as follows:

N,
L= —%{dln(%r) + || + (18K} )
where N, is the number of pixels in class k, and Sy, is the

sample covariance matrix which can be calculated as follows:

Ny,

> (sn — 1) (sn — 1) " 6)

n=1

1

S, = —

k N

Here m;, is the maximum likelihood estimation of the mean
and can be calculated as follows:

e = 3 s, )

It can be shown that the matrix W, that maximizes the log-
likelihood function in (5) is as follows [14]:

W, =U,A, — 021)Y/°R (8)

Here the columns of the matrix U, of size L x ¢ are the
eigenvectors of the matrix Sy, and the corresponding eigenval-
ues Ak.1,--- Ak q constitute the ¢ x ¢ diagonal matrix A,. R
is an arbitrary orthogonal rotation matrix of size ¢ x ¢ which
is choosen as the identity matrix in this study.

Rather than using the same approach with [14], in this
study we assume that the variance is distributed by an Inverse-
Gamma distribution:

(0B exp(—B/o)
IN{))]
)

Maximum-a-posteriori estimation of o7 is calculated as fol-
lows:

ot ~ Inv — Gamma(a, 3) =

g2 N Zf:qﬂ Ak, +208
FONE(L—q) +2(a+ 1)

(10)
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C. Spatial Model

We define a label vector z, € {0,1}% of length K
for each pixel in a hyperspectral image that contains K
land cover classes. We assume that the binary label vector
z, has the property that Zszl Zngk = 1. Thus z, €
{[1,0,...,0],[0,1,...,0],...,[0,0,...,1]}. We assume that
s, vectors are conditionally independent given class labels z,,
but z,, vectors are spatially dependent. The joint probability
of s,, and z,, can be written as follows:

(1)

where p(z,|Zrq(n),3) are the prior probabilities of class
labels, M (n) shows the pixels around the pixel n, and f3 is the
smoothing parameter. We define an auto-logistic model over
class labels which are the latent variables. According to this
model, conditional probability of a class label can be written
as follows [16]:

p(sn, Zn|01:Ka 5) X p(sn|zn, 91:K)p(zn|z./\/[(n)v ﬂ)

P(znklZnt(my o B) o €7t 2k Dmcaiin =) (12)

The joint probability of z, x, n =1, ..., N can be obtained by
multiplying the conditional probabilities. As opposed to [16],
in this model a larger area is used as M (n). 8 is chosen to be
homogeneous for regression, therefore we can find a proper
joint probability for the binary image. This auto-logistic model
was used before in [4] and [5].

Probability of s, can be written as the marginal prob-
ability of the joint probability p(sn,zn|01.x,2Mmmn), B) =
P(Sn|Zn, 01.x)P(Zn|Zr1(n), B) With respect to the latent vari-
able vector z,, as follows:

P(snlbrc Zaa(ny B) = D H (Snl0k)wn k] (13)
z, k=1
where wy, ;, shows the non-stationary mixture proportions that
can be found using (12) as follows:
eﬁvn,k
Wn,k = p(zn,k = ]-|Z/\/((n),k75) = K

e 14
Dy €70 o

where vy, ;, = 1 + ZmeM(n) Zm, k-
D. Classification

After the parameters 0. = {m;.xg, DI x } of the mixture
are estimated, new observations can be classified using the
model. Classification is performed by maximizing the posterior
probability of class labels z;.s;:. This posterior probability can

be factorized as follows:
p(Z1:N7 B|SlzN7 él:K) X p(sl:N|Z1:N7 él:K)p(zl:N|ﬂ) (15)

Here we can write the likelihood as follows:
p(si:n|z1n, O1:) = H H (n0k)""

Using the conditionals p(z,,|zq(n), 3) given in (12), we can
write the joint probability of class labels p(z1.x|3) given in
(15).

With the conditional independence assumption, that is

P(zw |Z{1. N\, B) = P(Zn|Zpa(nr), B), joint probability of

the random field can be written as follows:

p(z1:n]B) =
Hszl €xp {5 22]:1 Zn,k (1 + % ZmeM(n) ka) }
Z(p)

where Z(f3) is the normalization term.

We use the iterated conditional mode (ICM) algorithm in
order to predict class labels. Variables are updated iteratively
as follows:

(16)

2l maxp(salzn, Ozl 5

N
Bt maXHp n\zM(n) B)
n=1
(17)
In the update rules above n = 1,...N, k =1,.., K, and ¢ is

the time index. For the estimation of 3 we use the pseudo-
likelihood approach given in [16].

III. TEST RESULTS

In order to evaluate the performance of the proposed model,
we performed tests using the hyperspectral image datasets
named Indian Pines, Pavia Centre, Pavia University, and
Salinas, which are widely used in the literature. We construct
the training set by randomly choosing 10 pixels from each
class, and use the rest of the pixels as test sets.

Ground truth maps and class names of Indian Pines, Pavia
Centre, Pavia University and Salinas datasets are given in
Figures 1, 2, 3 and 4, respectively.

OoO=NWrhOIO®

O—=NWAUIOD 00O = = =ttt

Fig. 1. Indian Pines dataset with classes (0) Background, (1) Alfalfa, (2)
Corn-notill, (3) Corn-mintill, (4) Corn, (5) Grass-pasture, (6) Grass-trees, (7)
Grass-pasture-mowed, (8) Hay-windrowed, (9) Oats, (10) Soybean-notill, (11)
Soybean-mintill, (12) Soybean-clean, (13) Wheat, (14) Woods, (15) Buildings-
Grass-Trees-Drives, and (16) Stone-Steel-Towers.

Test results are given in Table I. This table shows the
average classification accuracies of 20 different runs. In this
table, we can see the results of PPCA with different cases that
the number of principal components are chosen to be 5, 10,
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before GMM classification (PCA+GMM) for benchmarking.

In PCA+GMM, PCA is applied to the whole image before
training and test set separation. Moreover, although the tests
were repeated using different number of principal components,
the highest classification accuracies for all datasets were
obtained using only the first few principal components. The
best results of (PCA+GMM) are given in Table I. As seen
from this table, the proposed method yields better classification
results than those of other two methods.

o = N W h OO N O ©

Example classification maps obtained from the tests are
given in Figure 5.

Fig. 2. Pavia Centre dataset with classes (0) Background, (1) Water, (2) Trees,
(3) Asphalt, (4) Self-Blocking Bricks, (5) Bitumen , (6) Tiles, (7) Shadows,
(8) Meadows, (9) Bare Soil

(a) PPCA-5 () BGMM  (c) PCA+GMM

o = N W A OO N O

Fig. 3. Pavia University dataset with classes (0) Background, (1) Asphalt,
(2) Meadows, (3) Gravel, (4) Trees, (5) Painted metal sheets, (6) Bare Soil, (d) PPCA-15 (e) BGMM (f) PCA+GMM
(7) Bitumen, (8) Self-Blocking Bricks, (9) Shadows.

d |

Fig. 4. Salinas dataset with classes (0) Background, (1) Brocoli green weeds
1, (2) Brocoli green weeds 2, (3) Fallow, (4) Fallow rough plow, (5) Fallow
smooth, (6) Stubble, (7) Celery, (8) Grapes untrained, (9) Soil vinyard develop,
(10) Corn senesced green weeds, (11) Lettuce romaine 4wk, (12) Lettuce
romaine 5wk, (13) Lettuce romaine 6wk, (14) Lettuce romaine 7wk, (15)
Vinyard untrained, (16) Vinyard vertical trellis.

O=NWLOIO®

(2) PPCA-10 (h) BGMM (i) PCA+GMM

O—=NWRUITONWO = =t

and 15 which are shown as PPCA-5, PPCA-10, and PPCA-15, (j) PPCA-10 (k) BGMM (1) PCA+GMM
respectively. In addition, the table shows the results obtained Fig. 5. Classification maps for Indian Pines (5a, 5b, 5¢), Pavia Centre (5d,
using the Bayesian GMM approach proposed in [3], and using Se, 5f), Pavia University (5g, 5h, 5i), and Salinas (5j, 5k, 51) datasets.
another approach that PCA dimension reduction is applied
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PPCA-5 | PPCA-10 | PPCA-15 | BGMM | PCA+GMM
Indian Pines 73.18 69.17 71.62 65.04 57.40
Pavia Centre 96.04 96.13 96.16 95.03 88.67
Pavia University 81.26 82.86 82.10 68.11 71.97
Salinas 87.00 88.58 87.22 82.74 81.56
TABLE I

CLASSIFICATION PERFORMANCE OF THE PROPOSED METHOD COMPARED WITH TWO OTHER APPROACHES

IV. CONCLUSION

In this study a mixture model for dimensionality reduction
and pixel-based contextual classification of hyperspectral im-
ages is proposed. Dimensionality reduction before classifica-
tion is a common technique for hyperspectral images. Rather
than performing two tasks separately, the PPCA-based method
proposed in this study performs both dimensionality reduction
and classification in one model with higher accuracies. Future
work will be the automatic determination of the number of
relevant principle components.
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