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ABSTRACT
In this work we estimate Super Resolution (SR) images from a

sequence of true color Compressed Sensing (CS) observations. The
red, green, blue (RGB) channels are sensed separately using a mea-
surement matrix that can be synthesized practically. The joint op-
timization problem to estimate the registration parameters, and the
High Resolution (HR) image is transformed into a sequence of un-
constrained optimization sub-problems using the Alternate Direction
Method of Multipliers (ADMM). A new, simple, and accurate, im-
age registration procedure is proposed. The performed experiments
show that the proposed method compares favorably to existing col-
or CS reconstruction methods at unity zooming factor (P), obtaining
very good performance varying P and the compression factor simul-
taneously. The algorithm is tested on real and synthetic images.

Index Terms— Super resolution, compressed sensing, color im-
ages, image reconstruction, image enhancement

1. INTRODUCTION

Compressive Sensing (CS) imaging simultaneously acquires and
compresses images, thus reducing the acquisition time. CS im-
age/video cameras (see [1–5]) have been applied to face recognition,
biomedical imaging, and microscopy imaging [6–8].

CS has been applied to many typical image processing tasks.
For instance, the problem of image deconvolution from CS mea-
surements has been addressed in [9,10]. CS has also been used in SR
problems. SR from a single CS image has been addressed in [11–13].
Gray scale image SR from multiple CS observations was proposed
in [14–16], where CS and SR techniques were coupled using three
different registration methods. The registration parameters were es-
timated at HR level from up-sampled versions of the reconstructed
CS images in [14] and from the reconstructed HR image in [15].
In [16] the registration parameters were estimated at the Low reso-
lution (LR) level from a down-sampled version of the estimated HR
image.

CS reconstruction has been applied also to color images, when
the three RGB channels are sensed separately. In [17] a method
to obtain color images from CS observations has been proposed.
The reconstruction process makes use of the correlation between
the three color channels and is based on group sparse optimization.
In [18], the single-pixel CS camera was combined with a Bayer col-
or filter, to acquire CS color images, then joint sparsity models were
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applied to recover the three RGB channels. In [4] SR images are
estimated from a single LR CS observation and applied to color im-
ages. In [13] CS video SR has been applied to spatial multiplexing
cameras, and experimentally to color videos.

In this work we estimate color SR images from multiple obser-
vations acquired using CS techniques, and propose a new approach
for image registration. The new Color Compressed Sensing Super
Resolution (CCSSR) algorithm estimates motion vectors using LR
reconstructed CS images.

The rest of this paper is organized as follows. The problem is
modeled and formulated in Section 2. The estimation process is de-
scribed in Section 3. Experimental analysis of the algorithm is pre-
sented in Section 4, and finally conclusions are stated in Section 5.

2. PROBLEM FORMULATION

Let us assume that we have access to a set of Q CS LR RGB color
images of the form

ycq =ΦcAHqC(sq)xc + ncq

=ΦcBq(sq)xc + ncq , for q = 1, . . . , Q, (1)

where c ∈ {R,G,B} denotes one of the three channels, ycq is an
M × 1 vector representing the c channel of the q-th CS-LR obser-
vation, Φc is the CS M ×D measurement matrix corresponding to
the c channel. The down-sampling matrix A is a D × N matrix,
D ≤ N , where N =P2D and P≥ 1 is the zooming factor, in each
dimension of the image. Hq is an N × N blurring matrix, which
is assumed to be known. C(sq) is the N × N warping matrix for
motion vector sq = [θq, cq, dq]

t, where θq is the rotation angle, and
cq and dq are, respectively, the horizontal and vertical translations
of the q-th LR image with respect to the reference frame, xc is an
N×1 vector representing the c HR channel we want to estimate, and
ncq models the noise associated with the corresponding observation.
We write Bq(sq) = AHqC(sq) for simplicity. We denote by F the
compression factor of the measurement system, that is F= M/D,
F≤ 1.

We assume in this paper that the LR images are sparse in a trans-
formed domain. That is, AHqC(sq)xc = Wacq , where W is a
D ×D transformation (wavelet) matrix, acq is the D × 1 LR trans-
formed coefficient vector corresponding to the c channel of the q−th
observation. We assume that the acq vectors are sparse and then
(see [16]) we recover them by solving

min
∑

c∈{R,G,B}

L(xc,ac) (2)

s.t. Bq(sq)xc = Wacq, for q = 1, . . . , Q and c ∈ {R,G,B} ,
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where

L(xc,ac) =
η

2

Q∑
q=1

∥ ΦWac − ycq ∥2 + τ

Q∑
q=1

∥ acq ∥1

+ α Q(xc) , (3)

with ac = (ac1, . . . ,acQ), η, τ and α positive parameters, Q(xc) a
regularization term which will be described soon, ∥ . ∥ the Euclidean
norm, and ∥ . ∥1 the ℓ1 norm.

3. CCSSR OPTIMIZATION APPROACH

Next we describe the optimization approach to the CCSSR problem.
To convert the constrained optimization problem in (2) into an un-
constrained one utilizing ADMM, we define the following augment-
ed Lagrangian functionals

L(x,a, s,λ) =
∑

c∈{R,G,B}

Lc(xc,ac, s,λc), (4)

where

Lc(xc,ac, s,λc) =L(xc,ac) +

Q∑
q=1

λt
cq(Bq(sq)xc −Wacq)

+
β

2

Q∑
q=1

∥ Bq(sq)xc −Wacq ∥2, (5)

and L(xc,ac) has been defined in (3), s = (s1, . . . , sQ) is the set of
motion vectors, λc = (λc1, . . . ,λcQ) is the set of D×1 Lagrangian
multiplier vectors λcq , and β is a positive parameter. The ADMM
leads to the following sequence of iterative unconstrained problems,

xk+1
c = argmin

xc

Lc(xc,a
k
c , s

k,λk
c ) , (6)

ak+1
c = argmin

ac

Lc(x
k+1
c ,ac, s

k,λk
c ) (7)

sk+1 = argmin
s

∑
c∈{R,G,B}

Lc(x
k+1
c ,ak+1

c , s,λk
c ) (8)

λk+1
cq = λk

cq − β[Bq(s
k+1
q )xk+1

c −Wak+1
cq ] , q = 1, . . . , Q,

(9)

where k is the iteration index. Notice that according to the ADMM
formulation, Bq(sq) in (2) should not depend on the iteration in-
dex, as is not the case here. However, we have not encountered any
convergence issues with this iterative procedure.

The regularization term Q(xc) is given by

Q(xc) =
∑
d∈∆

N∑
i=1

logϵ(|ω
xc
d (i)|) , (10)

which replaces log |ωxc
d (i)| by its robust version

logϵ(|ω
xc
d (i)|) =

{
log(|ωxc

d (i)|), for |ωxc
d (i)| ≥ ϵ

|ωxc
d

(i)|2

2ϵ2
− ( 1

2
− log(ϵ)), for 0 ≤ |ωxc

d (i)| ≤ ϵ

(11)

to avoid the singularity at zero. ωxc
d (i) is the i-th pixel of the filtered

channel, that is,

ωxc
d = Fdxc , (12)

where Fd is a high-pass filter operator, and the index d ∈ ∆ de-
notes one of the filters in ∆. In this paper we have used ∆ =
{h, v, hv, vh, hh, vv}, where h, v represent the first order horizon-
tal and vertical difference filters, hv and vh the first order differences
along diagonals, and hh and vv the horizontal and vertical second
order differences.

For the regularization term Q(xc) in (10), we can write

Q(xc) ≤ R(xc, ξc) =
1

2

∑
d∈∆

xt
cF

t
dΩdFdxc −

∑
d∈∆

N∑
i=1

ρ∗ϵ (
1

2
ξcd(i))

(13)

where ξ = (ξc1, . . . , ξcQ), ξcq = (ξcq(1), . . . , ξcq(N)) for q =
1, . . . , Q, with all its components positive, Ωd is a diagonal matrix
with entries

Ωcd(i, i) = ξcd(i) . (14)

For a given xc the inequality in (13) becomes an equality if
ρ∗ϵ (

1
2
ξcd(i)) is defined by (see [19] for details),

ξxc
cd (i) = min(

1

|ωxc
d (i)|2 ,

1

ϵ2
) =

{
1

|ωxc
d

(i)|2 , for |ωxc
d (i)| ≥ ϵ

1
ϵ2
, for 0 ≤ |ωxc

d (i)| ≤ ϵ
(15)

where ωxc
d (i) is defined from xc in (12). Then we can apply a stan-

dard Majorization-Minimization method [20]. Given xk
c ,a

k
c , s

k and
defining

Lk
c (xc) =

β

2

∑
q

∥ Bq(s
k
q )xc −Wak

cq ∥2

+
∑
q

λk
cq

t
(Bq(s

k
q )xc −Wak

cq) (16)

it can be easily shown that

Lk
c (x

k
c ) + αQ(xk

c ) ≥ Lk
c (x

k+1
c ) + αQ(xk+1

c ) (17)

where

xk+1
c = argmin

xc

{
β

2

∑
q

∥ Bq(s
k
q )xc −Wacq ∥2 +αR(xc, ξ

xk
c

c )

+
∑
q

λk
cq

t
(Bq(s

k
q )xc −Wak

cq)

}
. (18)

From (18), the optimization step in (6) produces the following
solution for xk+1

c

xk+1
c =

[
β
∑
q

Bkt

q(s
k
q )B

k
q (s

k
q ) + α

∑
d∈∆

Ft
dΩ

k
cdFd

]−1

×
∑
q

Bk
q (s

k
q )

t
[
βWak

cq − λk
cq

]
(19)

where

Ωk
cd(i, i) = min(1/|ωxk

c
d (i)|2, 1/ϵ2). (20)

The optimization step in (7) for each acq produces

ak+1
cq = argmin

acq

{η

2
∥ ΦWacq − ycq ∥2 +τ ∥ acq ∥1

+
β

2
∥ Bk

q (s
k
q )x

k+1
c −Wacq ∥2

− λk
cq

t
(Bk

q (s
k
q )xc −Wacq)

}
(21)
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which is equivalent to

ak+1
cq = argmin

acq

{η

2
∥ ΦWacq − ycq ∥2

+
β

2
∥ Bk

q (s
k
q )x

k+1
c − λk

cq −Wacq ∥2 +τ ∥ acq ∥1
}
. (22)

The above equation can be rewritten as

ak+1
cq = argmin

acq

∥ Φ′
cWacq − J′ ∥2 +τ ∥ acq ∥1, (23)

where

J′ =

[ √
η
2
ycq√

β
2
(Bk

q (s
k
q )x

k+1
c − λk

cq)

]
and Φ′ =

[√
η
2
Φc√
β
2
I

]
(24)

with I the D ×D identity matrix.
The above optimization problem can be solved using the algo-

rithm in [21].
Instead of estimating the registration parameters by solving (8),

we could find their down-sampled versions by solving

sk+1
Lq = arg min

sLq

β′

2

∑
c∈{R,G,B}

∥ C′(sLq)Wak+1
cr −Wak+1

cq ∥2,

(25)

where C′(sLq) is a D ×D warping matrix, β′ is a positive param-
eter, and r denotes the LR reference image. However, instead of
minimizing (25), we solve the following joint estimation problem

sk+1
Lq = arg min

sLq

β′

2
∥ C′(sLq)z

k+1 − zk+1
q ∥2, (26)

where z = Y (War), zq = Y (Waq), and Y (a) is calculated using

Y (a) = 0.2989aR + 0.5870aG + 0.1140aB , (27)

where aR,aG, and aB are the R, G, and B channels of the trans-
formed coefficient vector.

Notice that the warped LR observation C′(sLq)z is equivalent
to the LR version of Cq(sq)xc, and it can be approximated by ex-
panding it into its first-order Taylor series around the previous value
skLq . Hence we have (see [16, 22, 23])

C′(sk+1
Lq )zk+1 ≈ C′(skLq)z

k+1

+
[
Nq1(s

k
Lq)z

k+1,Nq2(s
k
Lq)z

k+1,Nq3(s
k
Lq)z

k+1
]
(sk+1

Lq − skLq),

(28)

where Ni(s
k
Lq)z

k+1 can be calculated using[
N1(s

k
Lq)z,N2(s

k
Lq)z,N3(s

k
Lq)z

]
=

[
(P1(s

k
Lq)M1(s

k
Lq) +P2(s

k
Lq)M2(s

k
Lq),M1(s

k
Lq),M2(s

k
Lq)

]
,

(29)

with

M1(s
k
Lq) = (I−Dbq(sLq))(Ltr(sLq) − Ltl(sLq))

+Dbq(sLq)(Lbr(sLq) − Lbl(sLq))

M2(s
k
Lq) = (I−Daq(sLq))(Lbl(sLq) − Ltl(sLq))

+Daq(sLq)(Lbr(sLq) − Ltr(sLq))

P1(s
k
Lq) = −[Du sin(θkq ) +Dv cos(θkq )]

P2(s
k
Lq) = [Du cos(θkq )−Dv sin(θkq ), (30)

Algorithm 1 Color CSSR Algorithm (CCSSR).
Require: Values α, β, τ , η

Initialize a0, s0, λ0, Ω0 = {Ω0
d, d ∈ ∆}

k = 0
while convergence criterion is not met do

1. for c ∈ {R,G,B}
i Calculate xk+1

c by solving (19)
ii For d ∈ ∆, calculate Ωk+1

cd using (20)
iii For q = 1, . . . , Q, calculate ak+1

cq using (23)
iv For q = 1, . . . , Q, update λk+1

cq using (9)
2. For q = 1, . . . , Q, calculate sk+1

q using (33)
3. Set k = k + 1

end while
return x = [xR,xG,xB ]

where Du and Dv are diagonal matrices whose diagonals are the
vectors u and v, respectively. They represent the pixel coordinates in
z. Matrices Lκ with κ ∈ {bl(sLq), br(sLq), tl(sLq), tr(sLq)} are
constructed in such a way that the product Lκz produces respectively
pixels at the bottom-left, bottom-right, top-left, and top-right, pixel
locations in zq . Substituting (28) into (26), we obtain the final update
equation as follows

sk+1
Lq = skLq +

[
Λk

q

]−1

Υk
q , (31)

where Λk
q and Υk

q correspond to the q-th observation at the k-th iter-
ation, with respectively (i, j) ∈ {1, 2, 3} element and i ∈ {1, 2, 3}
element given by

Λk
qij =

[
Ni(s

k
Lq)z

k+1
]t

Nj(s
k
Lq)z

k+1,

Υk
qi =

[
Ni(s

k
Lq)z

k+1
]t

(zk+1
q −Ni(s

k
Lq)z

k+1). (32)

If sk+1
Lq = [θLq, cLq, dLq]

t then the HR motion vector is approx-
imated by

sk+1
q = [θLq, P·cLq, P·dLq]

t (33)

The complete CCSSR algorithm is presented in Algorithm 1.

4. EXPERIMENTAL RESULTS

To analyze the behavior of the proposed CCSSR method we car-
ried out a set of experiments on the images shown in Figures 1(a-c).
The images have been warped, then degraded by Gaussian blurs of
different known variances and down-sampled. The LR RGB chan-
nels have been compressed separately using a circulant Toeplitz ma-
trix, to serve as a measurement matrix which could be practically
synthesized, following the Bernoulli probability distribution. White
Gaussian noise, with SNR=40 dB, has been finally added to the com-
pressed channels.

Figures 1(d,e) show respectively examples of a simulated LR
and a CS-LR observations for the Barbara image using motion vec-
tor s = [.1222,−2, 3]t, blur variance 7, P= 2 and F=0.5. We
used a 3-level Haar wavelet transform as the transform basis W,
Peak Signal to Noise Ratio (PSNR) as the performance measure,
and norm(xk−xk−1)

norm(xk−1)
≤ 10−3 as the stopping criterion.

In the first experiment Q=3 observations and a zooming factor
P=1 have been used in order to compare our method with the follow-
ing CS reconstruction methods: Nagesh et. al [18] (Na) , Wakin et
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(a) (b)

(c) (d) (e)

Fig. 1. Original Images (a) Barbara, (b) Lena, and (c) Peppers. (d)
Simulated LR Barbara image (s = [.1222,−2, 3]t, blur variance 7,
P=2), (e) simulated CS observation (F=0.5, SNR=40 dB). The black
line represents the added zero-valued entries to illustrate a square
image.

al [24] (Wa), Majumdar L2,1 (L1), L2,0.4 (L4), and SL2,0 (SL) [17].
Results are tabulated in Table 1.

Table 1. Performance comparison for CS algorithms with proposed
algorithm, for CCSSR P=1.0, Q=3. In bold are the highest PSNR
values.

Alg Na Wa L1 L4 SL CCSSR
Image F PSNR Values

.1 25.1 24.8 26.1 26.7 26.5 21.3
Barbara .2 27.1 26.6 28.0 28.5 28.3 29.9

.3 28.8 27.9 29.3 30.0 29.7 34.0

.1 26.1 25.9 27.0 27.6 27.5 25.8
Lena .2 28.3 27.7 29.0 29.7 29.5 31.6

.3 30.0 29.2 30.7 31.7 31.1 37.0

.1 25.0 24.5 25.6 26.3 26.0 24.8
Peppers .2 27.1 26.1 27.9 28.5 28.1 32.5

.3 29.8 28.1 30.5 21.4 30.9 35.2

Figure 2 shows a comparison between CS algorithms and the
proposed CCSSR algorithm. PSNR vs F curves are shown for P=1.0
and Q=3 for all algorithms. The performance of the proposed CC-
SSR outperforms others at practical Fs. However, for F = 0.1 the
performance measure shows values similar to other works.

In the second experiment we investigate the performance of the
proposed CCSSR algorithm for practical P and F values. For all
images we used Gaussian blur of variance 5, P=4, SNR=40dB, and
Q=3. The results are shown in Figure 3 for the three images used in
our study and different values of F.

Figures 4(a,b) show the reconstructed peppers images using

0.1 0.2 0.3
25

30

35

Compression Factor (F)

PS
N

R

CCSSR
Na
Wa
L1
L4
SL

Fig. 2. Comparison between CS algorithms and CCSSR algorithm
for the Lena image. For CCSSR, P=1, Q=3.

0.2 0.4 0.6 0.8 1

15

20

25

30

Compression Factor (F)

PS
N

R

Barbara
Lena

Peppers

Fig. 3. Performance Measure of proposed CCSSR vs F. P=4, Blur
Var=5, SNR=40dB, Q=3.

(a) (b)

Fig. 4. Reconstructed Peppers Images using CCSSR algorithm.
F=0.6, Blur Var=5, SNR=40dB, and Q=3. (a) P=2, (b) P=4,

CCSSR (F=0.6, Blur Var=5, SNR=40dB, and Q=3), for P=2 and
P=4, respectively. Figure 5(b) shows the result obtained using the
CCSSR (F=0.8, P=2) from 16 synthetically generated CS observa-
tions from a sequence of 16 real LR input images of a toy whose first
4 images are shown in 5(a).

5. CONCLUSIONS

In this work we have estimated HR color images from multiple CS
LR acquired images. The separately sensed channels are utilized in
a joint registration estimation procedure which effectively and accu-
rately estimates the registration parameters. This novel estimation
is based on the LR estimated images instead of the HR ones. The
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(a) (b)

Fig. 5. Estimation of HR image from synthetically CS real images
using CCSSR algorithm. (a) The first 4 of 16 input images, (b) Out-
put image (F=0.8, P=2)

estimated HR images compare favorably to those obtained by CS
methods which correlate the color channels.
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