2016 24th European Signal Processing Conference (EUSIPCO)

Unsupervised feature learning for Music Structural
Analysis

Michele Buccoli, Massimiliano Zanoni, Augusto Sarti, Stefano Tubaro

Dipartimento di Elettronica,
Informazione e Bioingegneria,
Politecnico di Milano,
piazza Leonardo da Vinci 32
Milano, Italy
Email: {name.surname} @polimi.it

Abstract—Music Structural Analysis (MSA) algorithms ana-
lyze songs with the purpose of automatically retrieving their
large-scale structure. They do so from a feature-based repre-
sentation of the audio signal (e.g., MFCCs, chromagram), which
is usually hand-designed for that specific application. In order to
design a proper audio representation for MSA, we need to assess
which musical properties are relevant for segmentation purposes
(e.g., timbre, harmony); and we need to design signal processing
strategies that can be used for capturing them. Deep learning
techniques offer an alternative to this approach, as they are able
to automatically find an abstract representation of the musical
content. In this work we investigate their use in the task of Music
Structural Analysis. In particular, we compare the performance
of several state-of-the-art algorithms working with a collection
of traditional descriptors and by descriptors that are extracted
with a Deep Belief Network.

I. INTRODUCTION

In popular western music, songs typically consist of a
sequence of functional segments, named sections, that are
assigned with different labels depending on their role in the
song, such as intro, verse, chorus, bridge and outro, and
that may appear multiple times in the same song. Automatic
Musical Structural Analysis (MSA) aims at identifying such
sections and grouping them together, which can be useful
for numerous applications, such as the generation of audio
summaries [1] or the extraction of section-level descriptors
for music retrieval purposes [2, 3]. This is why the Music
Information Retrieval (MIR) community has recently focused
on this problem and proposed several solutions [4, 5, 6].

MSA typically comprises two main steps: first the section
boundaries are identified (boundary detection); and then the
related regions are clustered together in order to identify the
structure of the song (clustering). In this study we focus only
on boundary detection.

Section boundaries typically occur in correspondence of the
substantial variation of some musical (thythmic, harmonic,
etc.) or timbral properties [7]. In view of this, is crucial to
provide an effective representation of music data able to cap-
ture these properties. At this purpose, most of representations
adopted in the literature are based on specifically-designed
descriptors such as chromagram and MFCC [7, 5]. However,

978-0-9928-6265-7/16/$31.00 ©2016 |IEEE

Davide Andreoletti
Networking Laboratory
University of Applied Sciences
of Southern Switzerland
Manno, Switzerland
Email: davide.andreoletti @supsi.ch

structural analysis is a complex task that may involve other
perceptual elements not captured by these descriptors. The
best set of features to use is still not clear [7, 8]. To address
these limitations, in this study we propose an unsupervised
method based on a Deep Belief Network (DBN) in order to
automatically learn the set of features that are more effective
to represent the music data. This approach has proved to be
effective in several MIR tasks, such as bootleg detection [9]
and genre recognition [10].

In order to asses the validity of our approach, we compare
the learned representation of data with the most used hand-
crafted features (chromagram and MFCC) by using some
of the state-of-the-art MSA techniques: [4, 5, 6] that use a
measure of homogeneity in order to identify homogeneous
regions in the Self-Similarity Matrix (SSM); [11] that focuses
on the detection of repetition of patterns by using a novelty
curve; [12] that uses graph theory techniques over a recurrence
matrix.

Let the reader notice that deep learning techniques have also
been used in the past to design a novel approach to MSA using
Convolutional Neural Networks (CNN) in [13]. However, in
our study we only focus on the feature extraction stage. For
this reason the comparison with [13] is out of the scope of
this work.

II. DEEP LEARNING

Deep learning techniques refer to a broad class of machine-
learning approaches that rely on the hierarchical organization
of the information. In this section we give a brief overview of
the technique used in our work, i.e the Deep Belief Network
(DBN). We refer the reader to [14] for a more comprehensive
dissertation.

A. Restricted Boltzmann Machine (RBM)

An RBM is a stochastic neural network in which it is
possible to identify a visible layer v € RM*! (i.e., the input
data) and an hidden layer h € RV <!, Visible and hidden layers
are fully connected, whereas no connection exists among
neurons of the same layer.

993

2016 24th European Signal Processing Conference (EUSIPCO)

TOO ®
W‘CC
GIGE®

V@@@m@

Fig. 1: Representation of a DBN, which is composed by
several stacked RBM

|
|
| RB
I _
|
|

0
98]
<
(¥

R

RBM!1

The RBM is trained in order to model the probability
distribution of the input, which is presented in the visible
layers, by means of the configuration of the visible and
hidden layers. To do so, an energy value is defined for each
configuration of visible and hidden layers [14] as

E(v,h)=-b'v—c'h—h Wy, (1)

being b € RM*! ¢ ¢ RV*! and W € RV*M the parameters
to compute, where | indicates the transpose operator.

Low values of energy are assigned to high probable config-
uration and vice versa. In order to compute the marginal with
respect of the visible layer, the Free Energy value is introduced
and is defined as [14]

—log Z e Bvh), ()

he#H,

where H, indicates the set of possible configuration from the
input vector v.

Given a dataset V of inputs, a RBM is then trained in order
to find the parameters such that:

{W,b, &} = argmin H F(v (3)
W.b,c vey

Once the RBM has been trained, the hidden layer can be
used to provide a representation of new input data v as h =
T (WV + é) ,

wise.
Since the hidden layer h is designed to extract the most
salient properties of a given input, such properties can be used

as a description of the input or processed to provide other more
representative features.

being 7 the sigmoid function applied element-

B. Deep Belief Network

A DBN is a multi-layer architecture that is composed by
the stacking of several RBMs [15], where each layer £ takes
as input the hidden vector h(*~1) of the previous one (as
in Figure 1) in order to produce the more abstract features
h(*). This kind of architecture allows the RBMs in the top

to combine the properties learned in the lower layers in order
to provide a more abstract representation of the input data.
Given a new data input v, the output of the DBN is its multi-
layer representation, i.e., the collection of all the hidden layers
h*) with k = 1, ...K, each one providing a different level of
abstraction.

A DBN is trained by individually training the RBMs by
which it is composed. This training is made to learn a repre-
sentation of the input data, hence unlabeled data is sufficient in
this step. The learned parameters can be fine-tuned in order to
learn a target-oriented representation, i.e., a representation that
is more useful for a given task. In this study, we investigate
the use of unsupervised features only.

III. MUSIC STRUCTURE ANALYSIS

Our approach is composed by three main steps: training
phase, validation phase and test phase. In the training phase
we train a 3-layer DBN by using a training set Spgn. The DBN
produces the set of learned features used to feed the boundaries
detection algorithms. We consider a set of state-of-the-art
methods (see section III-B) for the boundary detection. In the
validation phase, we find the best parameters for the MSA
algorithms over a validation set Syapp. The final test phase
aims to retrieve the overall performance and it is performed
over a test set Stest. The three sets are completely disjoint in
order to avoid over-fitting issues.

A. Feature Extraction

We train the DBN over an input represented by the normal-
ized log-magnitude of the Fourier Transform of a frame-level
representation of the audio files. More formally, we divide each
song X, s € Sppn into a sequence of I’ overlapping frames
Xs.f, f € {1,..., F'} of fixed duration and we compute the set
of the DBN training input V = {v, s} as

Vs r = 1og o (| F(xs,£)?), €]

where F represents the Fourier transform. In order to make
data consistent, we normalize the input to zero mean and unit
variance for each frequency bin as in [13].

We train the DBN in a layer-wise fashion and we obtain the
network parameters { W& Hk) gk } for each layer k €
{1,2,3} as discussed in Section II-B. We use the network
parameters to compute the learned features for unseen songs
Xs, $ ¢ Spen for each layer and each frame of xg ¢ as:

b = r(WHRD 4 e®), (5)
where h() = v, 5. We compose the final feature vector
h(ALL) by stacking hg J)c, h(Q) and h(J)f together.

B. Music Segmentation

Several musicology studies in the literature highlight that
in popular western music section boundaries occur typically
on the beat. For this reason, in order do make the method
more robust to noisy fluctuations and independent on tempo
variations, it is a common practice in MSA literature [16] to

994

2016 24th European Signal Processing Conference (EUSIPCO)

—
(=2
W

Time axis (s)

I.
122 163 204 245 286 326 368 409
Time axis (s)

[ke IR
0 40 81

(a) The SSM computed with traditional features (MFCCs and chro-

magram).

0 - — 1.0
40 0.9
81 H M4os
122 {07
.
3 163 a i los
3 — = =
5 204 i if {os
£ : =
£ 245} — . -~ el /I
286 03
i e = =
326 £ 0.2
wil T
|
368 ' i 0.1
409 et i el " n 00
0 40 81 122 163 204 245 286 326 368 409

Time axis (s)

(b) The SSM computed with learned features.

Fig. 2: Comparison of the SSMs for the song Special Roll (6:59) by Blacklite. The black lines indicate where the section

boundaries occur. The figure is best seen in color.

synchronize feature extraction to the beat. In this study we
extracted beat sequences by using the librosa framework [17].
Once the beat instants are obtained, we compute sequences
of beat-synchronous feature vectors by averaging the feature
vectors over the beat frames. The beat-synchronous feature
vectors are used to compute the SSM that is the base of all
MSA methods considered in this study.

In Figure 2 we show a comparison between two SSMs
computed from traditional (Fig. 2a) and learned (Fig. 2b)
features. The black lines indicate where the section boundaries
are located. The best scenario for most of the MSA algorithms
requires high and uniform self-similarity values in the blocks
in the main diagonal and lower self-similarity values between
contiguous blocks. We can notice that the SSM generated
from the learned features is visually neater. As an example,
the self-similarity values of the section around 40s presents
a noisy structure with the traditional features, that may lead
to over-segment that block, while with learned features is
visually smoother, i.e., the values are more uniform within the
block. For this reason, we expect that this might be a better
representation for MSA.

The boundary detection algorithms used in this study are: 1)
Foote [4] correlates a Gaussian kernel along the main diagonal
of the SSM to obtain a novelty curve from which peaks are
extracted; ii)) C-NMF [6] is based on a decomposition of the
SSM by using a convex non-negative matrix factorization; iii)
the algorithm proposed in [11] is a repetition-based approach
that uses structure features (SF) obtained from a time-lag
matrix computed from a recurrence plot of the SSM; iv)
Spectral Clustering (SC) [12] associates a recurrence plot
of the SSM with a graph and applies spectral clustering
techniques; v) Jensen [5] retrieve boundaries as the shortest
path of an adjacency matrix computed from the SSM. We

refer the reader to the original papers for a more extensive
explanation.

IV. EXPERIMENTS AND RESULTS

A. Experimental setup

In order to keep Spgn, SvaLip and Stgst disjoint we used
three separate datasets as follows: i) Spgn, Which is used to
train the DBN, is composed by the 10,000 copyright-free songs
from the Grand Challenge of User Experience (GCUX14) of
MIREX!'; ii) Syap is composed by a set of 90 annotated
songs by Queen, Michael Jackson and Carole King, from the
Centre for Digital Music (C4DM) at Queen Mary, University
of London?; iil) Sresr is composed by 140 freely-available
songs of the well-known SALAMI Dataset [18]. Since in
this study we propose an unsupervised approach to feature
learning, it is not necessary for the Spgn to be annotated for
the specific task of boundary detection.

In order to reduce the computational time, we down-
sampled songs to 11025 Hz, since we experimentally as-
sessed that it does not effect the performance. We considered
rectangular-windowed frames of 1024 samples, with 50%
overlap for the feature extraction. We used the Theano Python
library [19] to implement a three-layers DBN, with 75, 50 and
25 neurons for the first, second and third layer, respectively.
We trained the DBN with a pre-training learning rate of 10~°
for 10 epochs (i.e., iterations [14]) for each layer. We empir-
ically choose the above-mentioned parameters by considering
previous experiments on unsupervised feature learning via
DBN, such as in [9].

Thttp://www.music-ir.org/mirex/wiki/2014:GC14UX
2www.isophonics.net

995

TABLE I: Precision, Recall and F-Measure (PER respectively) with 0.5 and 3 seconds of tolerance. The traditional features

2016 24th European Signal Processing Conference (EUSIPCO)

are composed by the stacking of MFCC and chromagram.

Algorithm | Feature P@0.5s R@0.5s F@0.5s | P@3s R@3s F@3s

Foote learned 0.2153 03415 0.2542 | 04715 0.7306 0.5530
Foote traditional | 0.2454 0.3867 0.2874 | 0.4055 0.6371 0.4740
SF learned 0.1665 03083 0.2067 | 0.3021 0.6996 0.4741
SF traditional | 0.2166 0.3282 0.2515 | 0.4328 0.6485 0.5013
CNMF learned 0.2392 0.2653 0.2421 | 0.4846 0.5451 0.4937
CNMF traditional | 0.1890 0.3029 0.2230 | 0.3747 0.6190 0.4470
average learned 0.2070 03050 0.2343 | 0.4194 0.6584 0.5070
average traditional | 0.2170 0.3393 0.2540 | 0.4043 0.6349 0.4741

TABLE II: Precision, Recall and F-Measure (P,FR respectively) with 0.5 and 3 seconds of tolerance for the Jensen and SC

algorithm.
Algorithm | Feature | P@0.5s R@0.5s F@0.5s | P@3s R@3s F@3s
Jensen learned | 0.2203 0.3435 0.2559 | 0.4401 0.6810 0.5111
SC learned | 0.3282 0.2557 0.2658 | 0.5471 0.4440 0.4592

Most of the MSA algorithms used in this study are imple-
mented in the Music Structure Analysis Framework (MSAF?),
except for [5], which we implemented®*.

After a preliminary validation step, we observed that pa-
rameters used in the original papers for some of the MSA
algorithms were well-suited also for the learned features.
However, we experimentally tuned better parameters for the
algorithm proposed by Foote [4] and for the one by Jensen [5]
over the validation set Syapp . As far as [4] is concerned, we
set the following parameters: M = 48 is the size, in beats, of
the Gaussian kernel that is applied to the SSM; m = 6 is the
size, in beats, of a median filter which is applied, along the
time axis, over the feature matrix in the preprocessing; L = 96
is the size, in beats, of the windows over which the adaptive
threshold for the novelty curve is computed. As far as [5] is
concerned, we set & = 0.35 the cost of a new segment in the
adjacency matrix.

We performed the evaluation of our method over Stgst
by using the Python MIR evaluation framework[20] and we
compared the results with those published in the MIREX 2014
evaluation task in Structural Segmentation’® for the same set
of songs. We considered the hit-measures Precision, Recall
and F-measure with a tolerance of 0.5 and 3 seconds, which
are common metrics and tolerance values in the literature
and in the MIREX evaluation task. We present the results in
Table I. The traditional features used in the algorithms are the
chromagram and the MFCCs stacked together.

B. Comments on the results

As far as the Foote algorithm is concerned, the learned
features perform slightly worse considering the F-measure
with a tolerance of 0.5 seconds, while they clearly outperform
the hand-crafted features for the tolerance of 3 seconds.

3https://github.com/urinieto/msaf
“https://github.com/mbuccoli/jensen-segmenter
5http://nema.lis.illinois.edu/nema_out/mirex20 14/results/struct/sal/

In particular, the performance exhibits a higher recall than
precision, which let us to suppose that the Foote algorithm
might introduce a certain degree of over-segmentation, hence
to be too sensible to variation with both kind of descriptors

As far as the C-NMF is concerned, the learned features
outperform the traditional ones both in the case of 0.5s and
3s tolerance. Moreover, while with the traditional features
the recall is much higher than the precision, they are rather
balanced with the learned features. This implies that the
learned features are more robust to slight variation of harmony
or timbre, which can mislead the boundary detection.

The SF algorithm performs better with the traditional fea-
tures. We suppose this is because SF is based on the analysis
of the repetition of patterns, while learned features seem to
perform better with homogeneity-based algorithms.

The SC algorithm and the one proposed by Jensen were
not part of the MIREX2014 evaluation task, hence we could
not compare their performance with the traditional features
and their results are shown in the Table II. The SC algorithm
obtains optimal performance with the tolerance of 0.5s, since
it is able to outperform most of the algorithms, including the
SE. However, it exhibits poor performance on the 3s tolerance.
On the other hand, the algorithm proposed by Jensen exhibits
average results with the 0.5s tolerance, while it outperforms
all the other algorithms in the 3s, except for the one by Foote
in the case of learned features.

As an overall consideration on the results, the traditional
features exhibit higher performance when a lower tolerance is
considered, while learned features stand out with the tolerance
of 3s. In [13] it is shown that the same parameters setup
for a CNN achieves highly different performance for the
two tolerance values. The authors perform an analysis over
the parameters’ space for their MSA algorithm for the two
tolerance levels. In this work, we aim at finding a generic
feature representation for several MSA algorithms from the
state of the art, hence we select a setup that achieves fairly

996

2016 24th European Signal Processing Conference (EUSIPCO)

high results for all the algorithms and all the tolerance levels.

We consider this is a very promising result since the MSA
algorithms used here were originally designed for a traditional
feature representation.

V. CONCLUSION AND FUTURE WORKS

We investigated the use of features learned by means of
deep learning techniques for the task of Music Structural
Analysis. We compared the performance of some state-of-
the-art algorithms using traditional and learned features. The
performance proves the validity of learned features in the
MSA task when a higher tolerance is considered, even if the
algorithms were originally designed for traditional features. As
future works, we intend to exploit further deep architectures
for the feature extraction, as well as to exploit fine-tuning
techniques and to design specifically tailored MSA algorithms
for learned features.

REFERENCES

[1] G. Peeters, A. La Burthe, and X. Rodet, “Toward au-
tomatic music audio summary generation from signal
analysis.” in Proc. of the 3rd International Society for
Music Information Retrieval Conference (ISMIR), 2002.
M. Buccoli, A. Gallo, M. Zanoni, A. Sarti, and S. Tubaro,
“A dimensional contextual semantic model for music
description and retrieval,” in Proc. of the IEEE Inter-
national Conference on Acoustics, Speech and Signal
Processing (ICASSP), 2015.
L. Chiarandini, M. Zanoni, and A. Sarti, “A system
for dynamic playlist generation driven by multimodal
control signals and descriptors,” in Proc. of the 13th IEEE
International Workshop on Multimedia Signal Processing
(MMSP), 2011.
J. Foote, “Automatic audio segmentation using a measure
of audio novelty,” in IEEE International Conference on
Multimedia and Expo (ICME), 2000.
K. Jensen, “Multiple scale music segmentation using
rhythm, timbre, and harmony,” EURASIP Journal
on Applied Signal Processing, vol. 2007, no. 1,
pp. 159-159, Jan. 2007. [Online]. Available: http:
//dx.doi.org/10.1155/2007/73205
0. Nieto and T. Jehan, “Convex non-negative matrix fac-
torization for automatic music structure identification,” in
IEEE International Conference on Acoustics, Speech and
Signal Processing (ICASSP), May 2013, pp. 236-240.
M. J. Bruderer, M. F. McKinney, and A. Kohlrausch,
“Structural boundary perception in popular music.” in
Proc. of the 7th International Society for Music Infor-
mation Retrieval Conference (ISMIR), 2006.
D. Turnbull, G. R. G. Lanckriet, E. Pampalk, and
M. Goto, “A supervised approach for detecting bound-
aries in music using difference features and boosting.”
in Proc. of the 8th International Society for Music
Information Retrieval Conference (ISMIR), 2007.
[9] M. Buccoli, P. Bestagini, M. Zanoni, A. Sarti, and
S. Tubaro, “Unsupervised feature learning for bootleg

(2]

(3]

(4]

(5]

(6]

(7]

(8]

[15]

[18]

997

detection using deep learning architectures,” in IEEE
International Workshop on Information Forensics and
Security (WIFS), 2014.

P. Hamel and D. Eck, “Learning features from music
audio with deep belief networks,” in Proc. of the 11th
International Society for Music Information Retrieval
(ISMIR), 2010.

J. Serra, M. Muller, P. Grosche, and J. Arcos, “Unsuper-
vised music structure annotation by time series structure
features and segment similarity,” IEEE Transactions on
Multimedia, vol. 16, no. 5, pp. 1229-1240, August 2014.
B. McFee and D. P. W. Ellis, “Analyzing song structure
with spectral clustering,” in Proc of the 15th International
Society for Music Information Retrieval Conference (IS-
MIR), 2014, pp. 405-410.

K. Ullrich, J. Schliiter, and T. Grill, “Boundary detection
in music structure analysis using convolutional neural
networks,” in Proc. of the 15th International Society for
Music Information Retrieval Conference (ISMIR), 2014.
Y. Bengio, “Learning Deep Architectures for AlL”
Foundations and Trends in Machine Learning,
vol. 2, no. 1, pp. 1-127, 2009. [Online].
Available: http://www.nowpublishers.com/product.aspx?
product=MAL\ &doi=2200000006

G. E. Hinton, S. Osindero, and Y.-W. Teh, “A fast
learning algorithm for deep belief nets,” Journal Neural
Computation (JNC), vol. 18, no. 7, pp. 1527-1554, July
2006.

O. Nieto and J. Bello, “Music segment similarity using
2d-fourier magnitude coefficients,” in IEEE International
Conference on Acoustics, Speech and Signal Processing
(ICASSP), 2014.

B. McFee, M. McVicar, C. Raffel, D. Liang, O. Nieto,
J. Moore, D. Ellis, D. Repetto, P. Viktorin, J. F. Santos,
and A. Holovaty, “librosa: v0.4.0,” 2015. [Online].
Auvailable: http://dx.doi.org/10.5281/zenodo.18369

J. B. L. Smith, J. A. Burgoyne, 1. Fujinaga, D. D. Roure,
and J. S. Downie, “Design and creation of a large-scale
database of structural annotations,” in Proc. of the 12th
International Society for Music Information Retrieval
Conference (ISMIR), 2011.

J. Bergstra, O. Breuleux, F. Bastien, P. Lamblin, R. Pas-
canu, G. Desjardins, J. Turian, D. Warde-Farley, and
Y. Bengio, “Theano: a CPU and GPU math expression
compiler,” in Proc. of the Python for Scientific Computing
Conference (SciPy), 2010.

C. Raffel, B. McFee, E. J. Humphrey, J. Salamon, O. Ni-
eto, D. Liang, and D. P. W. Ellis, “mir eval: A transparent
implementation of common mir metrics,” in Proc. of
the 15th International Society for Music Information
Retrieval Conference (ISMIR), 2014.

