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ABSTRACT
Cooperative localization capability is a highly desirable char-
acteristic of wireless sensor networks. It has attracted consid-
erable research attention in academia and industry. The sum-
product algorithm over a wireless sensor network (SPAWN)
is a powerful method to cooperatively estimate the positions
of many sensors (agents) using knowledge of the absolute po-
sitions of a few sensors (anchors). Drawbacks of the SPAWN,
however, are its high computational complexity and commu-
nication load. In this paper we address the complexity is-
sue, reformulate it as convolution problem and utilize the
fast Fourier transform (FFT), culminating in a fast and ac-
curate localization algorithm, which we named SPAWN-FFT.
Our simulation results show SPAWN-FFT’s superiority over
SPAWN regarding the computational effort, while maintain-
ing its full flexibility and localization performance.

Index Terms— Cooperative localization, SPAWN, FFT,
Kernel bandwidth, Efficient computation

1. INTRODUCTION

Accurate and low-cost sensor position information is a criti-
cal requirement for a wide variety of applications. In cooper-
ative localization, sensors work together to share and process
measurements in order to build a map of the network [1, 2].
Due to their ability to incorporate prior information in form
of a distribution, Bayesian methods have become popular to
tackle localization problems. Their main drawback is often
the intractable analytical integration. One possible solution is
to express the problem as a global joint distribution, map it
on a factor graph and apply the sum-product algorithm (SPA)
to calculate efficiently the marginals. Its use in the context of
wireless sensor networks gives rise to SPAWN as detailed in
[3, 4]. While this algorithm suffered from high computational
complexity and communication load, [5] provided some effi-
cient solutions to this problem. In this paper, we propose a
new approach that scales down the message multiplication’s
complexity of the SPAWN from O(R2) to O(R), where R
is the number of particles. This is achieved by reformulating
the kernel density estimation (KDE) of the SPAWN such it
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can be computed via an FFT and interpolation, culminating
into a new algorithm, the SPAWN-FFT.

In the ensuing paper, Section 2 serves as problem formula-
tion, Section 3 shortly recapitulates the SPAWN’s essentials
and Section 4 introduces the SPAWN-FFT. In Section 5 simu-
lation results are presented and Section 6 concludes this work.

2. PROBLEM FORMULATION

A typical localization problem in a wireless sensor network
involves N sensors, divided into a subset of anchors and
agents. The anchors have exact location knowledge either ob-
tained from a global positioning system or hard-programmed
during the network deployment phase. The aim is to localize
the agents using communication between the sensor nodes
that are within communication range. This paper considers
only the 2d scenario, but the 3d extension is straightforward.
A sensor’s location will be denoted by x = [x, y]

T . The sen-
sor’s communication range is bounded to Rc. Furthermore
Γ→i denotes node i’s set of neighbors. The localization prob-
lem is modeled stochastically in the Bayesian framework and
our statistical signal model is

zj,i = dj,i + ηj,i, (1)

where zj,i denotes the noisy distance measurement, dj,i the
true Euclidean distance and ηj,i the measurement noise, for
nodes i and j, respectively. The complete set of measure-
ments is denoted by z. Given the set of measurements
from (1) along with the assumptions that (i) all node’s prior
are mutually independent f(x1, . . . ,xn) =

∏N
i=1 fi(xi),

(ii) the measurements are mutually conditionally indepen-
dent, f(z|x1, . . . ,xN ) =

∏N
i=1

∏
j∈Γ→i

f(zj,i|x1, . . . ,xN )

and (iii) that the relative measurements zj,i depend only
on the receivers and transmitters respective position, i.e.,
f(zj,i|x1, . . . ,xN ) = f(zj,i|xi,xj), the global joint poste-
rior distribution can be formulated as,

f(x1, . . . ,xN |z) ∝
N∏
i=1

fi(xi)
∏

j∈Γ→i

f(zj,i|xi,xj). (2)

The aim is to marginalize (2), using the SPA and obtain
f(xi|z). The final point estimates are easily obtained from
the posterior mean, the posterior mode or posterior median.
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3. THE SUM-PRODUCT ALGORITHM OVER A
WIRELESS SENSOR NETWORK

The SPA’s application to the localization problem is con-
ducted iteratively, due to unavoidable cycles in the graph. The
algorithm runs for a predefined number of iterations with it-
eration index ` = 1, . . . , Niter. Based on range measurements
SPAWN calculates for each sensor, during each iteration, the
so-called internal message and belief update via,

I(`)
j,i (xi) ∝

∫
f(zj,i|xi,xj)B(`)

j (xj)dxj , (3)

B(`+1)
i (xi) ∝ fi(xi)

∏
j∈Γ→i

I(`)
j,i (xi). (4)

The internal message (3) is computed locally at node i and
contributes to the belief update (4). The belief indicates node
i’s uncertainty regarding its true location xi.

3.1. The Classical (particle based) SPAWN

The non-linear relationship in f(zj,i|xi,xj) and the non-
Gaussian uncertainty of B(`)

j (xj) gives rise to Monte Carlo
solutions using particles and associated weights, known as
importance sampling. This culminates into the particle based
SPAWN, inspired by [6]. In the `-th iteration node i broad-
casts its belief, expressed as particles x

r,(`)
i and weights

w
r,(`)
i , forming the set {xr,(`)i , w

r,(`)
i }Rr=1. Receiving the

neighbors beliefs B(`)
j (xj) ∀j ∈ Γ→i, node i filters them with

its own measurements forming the internal message I(`)
j,i (xi),

being approximated as {xr,(`)j,i , w
r,(`)
j,i }Rr=1. As an approxi-

mation to the updated belief B(`+1)
i (xi), a set of particles

{xr,(`+1)
i }αRr=1 is drawn from a proposal distribution q(`)(xi).

In line with [6] this could be the incoming messages sum,

q(`)
(
x
r,(`+1)
i

)
=
∑
j∈Γ→i

I(`)
j,i

(
x
r,(`+1)
i

)
. (5)

Then, the associated importance weights are computed as,

w
r,(`+1)
i ∝

fi

(
x
r,(`+1)
i

)∏
j∈Γ→i

I(`)
j,i

(
x
r,(`+1)
i

)
q(`)

(
x
r,(`+1)
i

) . (6)

The I(`)
j,i (xi) is approximated via KDE as,

I(`)
j,i

(
x
r,(`+1)
i

)
=

R∑
κ=1

w
r,(`)
j,i KH

(
x
r,(`+1)
i − x

κ,(`)
j,i

)
. (7)

In this context, KH(·) denotes the kernel and H the band-
width matrix which is either chosen as diagonal or uncon-
strained. While the kernel choice is of minor impact and is
often chosen as Gaussian, bandwidth selection is crucial and
offers performance gains for the algorithm. To avoid the im-

poverishment, resampling of {xr,(`+1)
i , w

r,(`+1)
i }Rr=1 should

be conducted, leading to a new set of particles with equal
weights. The calculation of (7) is of complexity O(R2) for
a given bandwidth matrix. An automatic data driven cal-
culation of H involves a further computation of complexity
O(R2) [7], so the rule-of-thumb technique should be utilized,
if speed is of major concern. The communication load is 2R
real numbers.

4. THE SPAWN-FFT

The main drawback of SPAWN is its message multiplication’s
complexity, driven by the involved KDE. A key observation
regarding (7) is, that this operation is a convolution between
the data point masses and the chosen kernel function. As such,
the discrete convolution theorem can be applied along with
the FFT for efficient calculation. In the following we only de-
scribe the technique introduced by [7–9] which is limited to
product kernels. Even though this is sufficient for SPAWN,
recent improvements by [10] made unconstrained bandwidth
matrices available, for the price of increased computational
effort. In SPAWN this procedure involves the following steps:
first, the particle data are quantized. Second, the problem
is reformulated as discrete convolution and solved using the
two-dimensional FFT. Third, the internal message is sampled
using an interpolation technique. An optional fourth step uses
a Gaussian mixture clustering and expresses the node’s belief
in parameters.

4.1. Data Quantization

In a first step the set {xr,(`)j,i , w
r,(`)
j,i }Rr=1 is used to determine

an appropriate bandwidth matrix, where a diagonal one is suf-
ficient. In a subsequent step, the particles {xr,(`)j,i }Rr=1 are
bounded into a box with lower and upper bounds

a =
[
min

(
x
r,(`)
j,i

)
− 3hx; min

(
y
r,(`)
j,i

)
− 3hy

]
, (8)

b =
[
max

(
x
r,(`)
j,i

)
+ 3hx; max

(
y
r,(`)
j,i

)
+ 3hy

]
. (9)

The cash of ±3h is proposed in [8] to avoid problems with
the FFT’s wrap-around edge conditions and guard the target
density from numerical corruption, as illustrated in Figure 1.
Then the data are quantized intoM levels for each dimension.
Classical techniques are the simple and linear procedure from
[11].

For instance, the following simple rule determines a quan-
tization step size as δd = (bd − ad) /M and discretizes the
data as,

kd = floor(1 + (rd − ad)/δd), (10)

where kd represents the index and rd the r-th particle in the
d-th dimension, such as x and y. For each data point rd, a
grid count is determined as,

νkx,ky = νkx,ky + 1. (11)

This delivers a matrix of grid-counts CM·M.

2016 24th European Signal Processing Conference (EUSIPCO)

191



4.2. Two-Dimensional Fourier Transformation

Given the grid counts, the next step is to determine the kernel
values. For this purpose one must determine δd = (bd −
ad)/(M−1) for each dimension. The next step is to introduce
an effective support parameter τ . For the Gaussian kernel this
allows a truncation and all kernel evaluations for |rdδd/hd|≥
τ can be omitted. Furthermore it is sufficient to define some
Ld = min{M − 1,floor(τhd/δd)} for each dimension and
subsequently define some ld = (0 : Ld)δd for each dimension
as well. The last quantity represents the sample values for the
kernel function. Given these quantities a highly composite
number of 2 is determined as Pd = 2ceil(log2(Ld+M)) and
Px = Py should be ensured. Then two convolution matrices
are generated. The grid-count matrix CPx·Py is

C =

[
C 0
0 0

]
, (12)

with C in its first 1, . . . ,M rows and columns. Second the
kernel matrix KPx·Py

is given by,

K =



k0,0 . . . k0,L2
k0,L2

. . . k0,1
...

. . .
... 0

...
. . .

...
kL1,0 . . . kL1,L2

kL1,L2
. . . kL1,1

0 0 0
kL1,0 . . . kL1,L2

kL1,L2
. . . kL1,1

...
. . .

... 0
...

. . .
...

k1,0 . . . k1,L2
k1,L2

. . . k1,1


.

(13)
The quantities (12) and (13) are zero-padded and for the lat-
ter one, the wrap-around ordering is utilized. Furthermore it
is remarkable that only 2Ld kernel evaluations are necessary,
regardless of the value of R, delivering enormous computa-
tional savings compared to (7). Subsequently (12) and (13)
are transformed into the frequency domain using the FFT and
the convolution problem is easily solved as

CF = F(C), (14)
KF = F(K), (15)
PF = CF �KF . (16)

In this context the matrix (16) is the Hadamard-Schur prod-
uct of (14) and (15). Since Pd is already a highly composite
number, further point adjustment for the FFT is superfluous.
The searched density is obtained via IFFT applied to (16) as,

P = F−1(PF ), (17)

and a normalization step is carried out as P = P/
∏2
d=1 Pd.

For unconstrained bandwidth support, equations (12) and (13)
must be adjusted as described in [10]. However, this results
in the loss of symmetries and increased computational effort.

4.3. Internal Message Interpolation

From the entries of (17) the searched density can now be sam-
pled from P via its first 1, . . . ,M rows and columns respec-

tively, delivering a sub-matrix P̃ . It is noteworthy that due
to numerical rounding errors, introduced from the FFT, sev-
eral entries may be negative. A logical check can replace
them with the machine precision number. The next step con-
cerns the actual evaluation of the kernel at the temporal be-
lief particles {xr,(`)i }αRr=1. We use bilinear interpolation for
this task with the aforementioned particles as input. Its ap-
plication requires the creation of a rect-linear 2d interpolation
grid. This can be done by creating a linear mesh between (8)
and (9) using M points. Given the value of P̃ at four grid
points, Ω11 = [x1, y1], Ω12 = [x1, y2], Ω21 = [x2, y1] and
Ω22 = [x2, y2], interpolation in the x-direction delivers

I(`)
j,i ([x, y1]) ≈ x2 − x

x2 − x1
P̃ (Ω11) +

x− x1

x2 − x1
P̃ (Ω21),

I(`)
j,i ([x, y2]) ≈ x2 − x

x2 − x1
P̃ (Ω12) +

x− x1

x2 − x1
P̃ (Ω22).

Subsequently proceeding in the y-direction delivers the de-
sired estimate,

I(`)
j,i (xi) ≈

y2 − y
y2 − y1

I(`)
j,i ([x, y1]) +

y − y1

y2 − y1
I(`)
j,i ([x, y2]).

(18)
For particles outside the box, we extrapolate by the machine
precision number (eps) in order to avoid numerical instabili-
ties, guarantee matching output vectors and prevent the pro-
posal distribution from destruction. Therefore, with (18) an
efficient solution to (7) is found and from a high level per-
spective the message multiplication’s complexity scales down
from O(R2) to O(P log(P ) + R) in the worst case. Since
R � P log(P ) the complexity is approximately O(R) as
compared in Table 1. For dimensional analysis see [6].

Algorithm Complexity
SPAWN O(R2)
SPAWN-FFT O(R)

Table 1: Comparison of message multiplication’s complexity.

4.4. Belief Clustering

With the intention to reduce the algorithm’s communication
overhead of 2R belief particles, [12] demonstrated that clus-
tering using a Gaussian mixture, allows to approximate this
belief as,

B(`)
i (xi) ≈

K∑
k=1

ω
k,(`)
i N

(
xi;µ

k,(`)
i ,Σ

k,(`)
i

)
, (19)

where N represents a Gaussian with mean µk,(`)i and co-
variance Σ

k,(`)
i and ωk,(`)i are the mixing coefficients. The

parameters can be determined via the EM-algorithm. Along
with the proposal in [5] a further extension can be found uti-
lizing an adaptive procedure such as the greedy EM. There-
with, instead of a large set of particles, only the parameters
{ωk,(`)i ,µ

k,(`)
i ,Σ

k,(`)
i }Kk=1 are required to transmit.
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Fig. 3: RMSE localization performance
over communication range Rc.

5. SIMULATION RESULTS

5.1. Simulation Setup

The subsequent simulation part examines the performance of
the SPAWN-FFT algorithm and compares it with the classi-
cal SPAWN regarding their localization performance in terms
of root-mean-square error performance (RMSE) and compu-
tational time for the full algorithm. Our simulation scenario
is 50 m × 50 m indoor with 32 agents and 8 anchors. An-
chors are placed as nested squares, and agents are uniformly
randomly distributed over the full deployment area, as de-
picted in Figure 2. The agent’s belief is initialized as uniform
over the full area and the communication range Rc ranging
from 17.5 m to 25 m, with an increment of 2.5 m. Our mea-
surement scenario is line-of-sight with ηj,i ∼ N (0, (0.4)2).
As kernel function a standard Normal N (x; 0,H) is cho-
sen and the bandwidth matrix is designed as diagonal with
hd = std

(
x
r,(`)
j,i

)
R−1/3 and H = diag(h2

x, h
2
y).

The utilized quantization or binning strategy is Scott’s sim-
ple binning from [11]. As point estimate the posterior mean
is chosen. Furthermore, no message censoring scheme is uti-
lized. For each of the following curve’s points 100 Monte
Carlo runs were conducted and the results were averaged over
them. Those runs using the additional Gaussian mixture clus-
tering are marked with GM. Table 2 lists additional simula-
tion parameters.

Parameter Value Description
R 500 Number of particles
α 2 Sampling parameter
K 2 Number of mixture components
Niter 10 Number of iterations
τ 3 Effective support parameter
M 30 & 60 Level number

Table 2: Simulation parameters.

5.2. Simulation Results

At first we examined the localization performance of SPAWN
and SPAWN-FFT. In this first step we did not utilize the Gaus-
sian mixture clustering. From the results of Figure 3 it is
obvious that the quantization level’s choice M is of crucial
impact. For M = 30 SPAWN-FFT is inferior regarding
its localization performance. With increased communication
range, this becomes more evident. The reason can be found
in the level number, as it determines the degree of approxi-
mation for the internal message and the details which can be
stored. So in this case, the quantization error is large. The sec-
ond observation is, that forM = 60, SPAWN-FFT performs
similarly as the SPAWN. With an increased level number,
the quantization error becomes smaller, more details can be
stored and according to Figure 3, SPAWN-FFT is even slight
superior for communication ranges greater than around 18 m,
which is most evident for 20 m. Nevertheless, one should be
aware of numerical rounding errors and should conclude, that
for increasing communication range, both algorithms tend to
perform similarly.

Next to the algorithm’s localization performance the simu-
lation time was one of our major interests. For this purpose
the execution time for the full algorithm was measured. The
simulations were run on an Intel i3 350m with 2.27 GHz and
8 GB memory. Figure 4’s results reveal that SPAWN requires
the largest amount of simulation time, as one could expect
from (7)’s complexity, where a remarkable fact is, that the
sample size is fixed and its complexity increases with a scal-
ing parameter related to the increased communication range.
Furthermore, as expected SPAWN-FFT clearly outperforms
SPAWN regarding the simulation time. The fastest solution
can be obtained forM = 30, while increasingM to 60 only
modest influences it. The results for localization performance
and simulation time demonstrate SPAWN-FFT’s capability to
outperform SPAWN regarding the computational effort while
preserving SPAWN’s flexibility and localization performance.

In a final step, we compared the localization performance
and simulation time of SPAWN-FFT with belief clustering.
According to Figure 5 the localization performance is slightly
improved, resulting from an additional amount of smooth-

2016 24th European Signal Processing Conference (EUSIPCO)

193



17.5 20 22.5 25
0

50

100

150

200

250

300

350

400

450

500

Rc [m]

M
ea
n
R
u
n-
T
im

e
[s
]

 

 

SPAWN
SPAWN-FFT M = 30
SPAWN-FFT M = 60

Fig. 4: Mean Run-Time performance
over communication range Rc.

17.5 20 22.5 25
0.4

0.45

0.5

0.55

0.6

0.65

0.7

0.75

0.8

0.85

Rc [m]

R
M
S
E
[m

]

 

 

SPAWN-FFT M = 30
SPAWN-FFT M = 60
SPAWN-FFT M = 30 GM
SPAWN-FFT M = 60 GM

Fig. 5: RMSE localization performance
over communication range Rc with
Gaussian mixture GM.

17.5 20 22.5 25
10

15

20

25

30

35

40

45

50

55

60

Rc [m]

M
ea
n
R
u
n-
T
im

e
[s
]

 

 

SPAWN-FFT M = 30
SPAWN-FFT M = 60
SPAWN-FFT M = 30 GM
SPAWN-FFT M = 60 GM

Fig. 6: Mean Run-Time performance
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Gaussian mixture GM.

ing, introduced by the Gaussian mixture. While the mixture
model’s order is fixed here, note that localization results are
still improvable by a more appropriate model order selection
strategy. The EM-algorithm’s use increases the simulation
time as demonstrated in Figure 6, but for a fixed component
model the operation can be carried out in linear complexity.
This demonstrates that belief clustering potentially improves
the localization performance and effectively reduces the com-
munication load at the cost of additional computational effort
for clustering. Concluding it should be noted, that SPAWN
and SPAWN-FFT tend to improve their performance as the
number of particles increases. Nevertheless, for SPAWN this
is more inconvenient than for SPAWN-FFT, first from the
complexity of (7) as well as from the communication load.

6. CONCLUSIONS

With our work we proposed an extension to the SPAWN
framework, the SPAWN-FFT algorithm. The proposed
SPAWN-FFT algorithm reduces the computational complex-
ity associated with message multiplication in the SPAWN
while preserving its flexibility. As shown in our simulation
results, the SPAWN-FFT significantly reduces the simulation
time, and retains a similar localization performance as the
SPAWN. Additionally, Gaussian mixture belief clustering re-
duces the communication load to the mixture’s parameters.
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