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Abstract—An electrolarynx is a speaking aid device to ar-
tificially generate excitation sounds to help laryngectomees
produce electrolaryngeal (EL) speech. Although EL speech is
quite intelligible, its naturalness significantly suffers from the
unnatural fundamental frequency (F0) patterns of the mechanical
excitation sounds. To make it possible to produce more naturally
sounding EL speech, we have proposed a method to automatically
control F0 patterns of the excitation sounds generated from
the electrolarynx based on the statistical F0 prediction, which
predicts F0 patterns from the produced EL speech in real-time.
In our previous work, we have developed a prototype system
by implementing the proposed real-time prediction method in
an actual, physical electrolarynx, and through the use of the
prototype system, we have found that improvements of the
naturalness of EL speech yielded by the prototype system tend
to be lower than that yielded by the batch-type prediction. In
this paper, we examine negative impacts caused by latency of
the real-time prediction on the F0 prediction accuracy, and to
alleviate them, we also propose two methods, 1) modeling of
segmented continuous F0 (CF0) patterns and 2) prediction of
forthcoming F0 values. The experimental results demonstrate
that 1) the conventional real-time prediction method needs a large
delay to predict CF0 patterns and 2) the proposed methods have
positive impacts on the real-time prediction.

I. INTRODUCTION

Production of electrolaryngeal (EL) speech is one of the
major alternative speaking methods for laryngectomees. EL
speech is produced using an electrolarynx, which is typically
held against the neck to mechanically generate artificial exci-
tation signals. The generated excitation signals are conducted
into the speaker’s oral cavity, and are articulated to produce EL
speech. EL speech is relatively intelligible but its naturalness
is very low owing to unnatural fundamental frequency (F0)
patterns of the mechanically generated excitation signals.

To address this issue of EL speech, several methods have
been proposed to control F0 patterns of the excitation signals
generated from an electrolarynx additionally using intention-
ally controllable signals, such as expiratory air pressure [1],
up and down switched controlled by a finger [2], and forearm
movements [3]. Although these methods can change the F0

patterns, it is inherently difficult to control these signals to
generate natural F0 patterns corresponding to linguistic content
of the speech.

To generate more natural F0 patterns, we have proposed
a method to control F0 values [4] based on statistical F0

prediction [5] [6] [7]. In this framework, F0 patterns are
predicted not according to signals consciously provided by
the speaker as in the other control methods but using only
the produced EL speech signals as shown in Fig. 1. Statistical
voice conversion techniques [8] [9] have been successfully
applied to this prediction task. Relatively natural F0 patterns
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Fig. 1. Proposed system to directly control an electrolarynx using real-time
statistical F0 prediction for laryngectomees.

can be predicted using statistics extracted in advance from
parallel data consisting of utterance pairs of EL speech and
natural speech. Our preliminary experimental results through
a simulation have demonstrated that the proposed method
yields significant improvements in naturalness while causing
no degradation in listenability and intelligibility compared to
the original EL speech [4][10].

In our previous work [11], we have developed a prototype
system by implementing our proposed F0 control method of
an electrolarynx based on statistical F0 prediction. We have
confirmed that the naturalness of EL speech is significantly
improved by the use of our prototype system. On the other
hand, we have also found that improvements of the naturalness
of EL speech yielded by the prototype system tend to be lower
than that yielded by our conventional system based on batch-
type prediction. It is possible that the real-time statistical F0

prediction requires a large delay time to ensure sufficient F0

prediction accuracy. Moreover, because the prototype system
also needs additional processing delay, its large delay time
significantly degrades naturalness of the enhanced EL speech
in the form of causing larger mismatch between articulation
behavior and the predicted F0 patterns.

In this paper, we examine the effect of the delay time on
the real-time statistical F0 prediction. Moreover, to address the
negative impacts caused by latency of the real-time prediction
on the F0 prediction accuracy, we propose two methods:
1) modeling of segmented continuous F0 (CF0) patterns to
shorten the required delay time in real-time statistical F0

prediction and 2) prediction of forthcoming F0 values to
cancel the impact of the processing delay of the prototype
system. Through the experimental evaluation, we demonstrate
that 1) the delay time required to predict CF0 patterns in the
conventional prediction method can be significantly reduced
by using the segmented CF0 modeling strategy, and 2) the
negative impacts of the processing delay can be effectively
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alleviated by predicting the forthcoming F0 values.

II. DIRECT CONTROL OF ELECTROLARYNX BASED ON
STATISTICAL F0 PREDICTION [4]

A. Strategy of Direct Control of Electrolarynx
Our proposed system (shown in Fig. 1) to directly control

F0 patterns of the excitation signals generated from an electro-
larynx consists of prediction and articulation processes. In the
prediction process, the F0 value is predicted from EL speech
produced by a laryngectomee frame by frame using the real-
time voice conversion algorithm. In the articulation process,
the laryngectomee produces the EL speech by articulating
the excitation sounds generated from the electrolarynx based
on the predicted F0 values. Therefore, this system allows
laryngectomees to directly produce enhanced EL speech with
more natural F0 patterns corresponding to linguistic contents.

B. Statistical F0 Prediction Method
We briefly review our statistical F0 prediction method [5]

[6] [7], which exploits the idea of statistical voice conversion
techniques [8] [9]. The aim of this method is to predict F0 con-
tours from the spectral parameters of EL speech. We describe
training, batch-type prediction, real-time prediction processes
and problems of delay arising in real-time processing.

In the training process, a parameter set λ of the joint
probability density function P ([X⊤

t ,Y
⊤
t ]

⊤|λ) modeled by
a Gaussian mixture model (GMM) is trained [12] using a
parallel data set consisting of utterance pairs of the EL speech
and target normal speech, where Xt and Y t denote source
features and target features at time frame t, respectively, and ⊤
denotes transposition. The corresponding joint feature vectors
can be obtained by performing automatic frame alignment
between the EL speech and the target normal speech with
dynamic time warping. As the source features Xt, the spectral
segment features of EL speech are extracted on a frame-by-
frame basis from the mel-cepstra at multiple frames around
the current frame t [13]. The target features Y t = [yt,∆yt]

⊤

consist of the static and delta (time derivative) components
of the log-scaled F0 value yt, extracted on a frame-by-frame
basis from the target normal speech. Note that to improve
prediction accuracy, we use continuous F0 (CF0) patterns
which interpolate unvoiced frames of F0 patterns by using
spline interpolation, and remove micro-prosody [14].

In the batch-type prediction process, given the spectral
segment sequence X = [X⊤

1 , . . . ,X
⊤
T ]

⊤ of EL speech, the
most likely F0 sequence y = [y1, . . . , yT ]

⊤ can be obtained
as follows:

ŷ= argmax
y

P (Y |X,λ) subject to Y = Wy, (1)

P (Y |X,λ)=
∑
m

P (Y |X,m,λ)P (m|X,λ)

≃ P (Y |X, m̂,λ)P (m̂|X,λ), (2)
m̂= argmax

m
P (m|X,λ), (3)

P (Y |X, m̂)= N (Y ;E
(Y |X)
m̂ ,D

(Y |X)
m̂ )

=
∏T

t=1 N (Y t;E
(Y |X)
m̂t,t

,D
(Y |X)
m̂t

), (4)

where Y = [Y ⊤
1 , . . . ,Y

⊤
T ]

⊤ denotes the joint static and
dynamic feature vector sequence, W is a linear transform
to append dynamic features into the static feature sequence,
m = {m1, . . . ,mT } indicates a sequence of mixture indices,

E
(Y |X)
m̂t,t

is the conditional mean vector at frame t, which
is given by the mixture-dependent linear transformation of
the source feature vector Xt, and D

(Y |X)
m̂t

is the conditional
covariance matrix depending of the mixture component m̂t.
The ML estimate of F0 sequence ŷ is analytically determined
as follows:

ŷ = (W⊤D
(Y |X)
m̂

−1
W )−1W⊤D

(Y |X)
m̂

−1
E

(Y |X)
m̂ . (5)

The real-time prediction process is achieved by using a com-
putationally efficient real-time voice conversion method [15]
based on a low-delay conversion algorithm [16]. To ap-
proximate the batch-type prediction process with the frame-
wise prediction process, we divide the F0 sequence y into
overlapped (L + 1)-dimensional segment vectors y(t) =
[yt−L, . . . , yt]⊤ at individual frames. With treating the seg-
ment vectors as a latent variable, the following linear dynam-
ical system can be designed [17]:

y(t)= Jy(t−1) + [01×L, µ
(y|X)
m̂t,t

+ n
(y|X)
m̂t

]⊤, (6)

µ
(∆y|X)
m̂t,t

= wy(t) + n
(∆y|X)
m̂t

, (7)

where the state transition matrix J just shifts the previous
segment vector y(t−1), and the linear transform w to calculate
the dynamic features at frame t from the segment vector.
The observation µ

(∆y|X)
m̂t,t

, a parameter µ
(y|X)
m̂t,t

, process noise
n
(y|X)
m̂t

, and observation noise n
(∆y|X)
m̂t

are described with
the conditional mean vector E

(Y |X)
m̂t,t

and covariance matrix
D

(Y |X)
m̂t

at frame t. The segment vector is recursively updated
frame by frame with Kalman filtering, and its first component
yt−L is used as the ML estimate ŷt−L. Therefore, the F0 value
at frame t is determined by considering all past frames, a
current frame, and next L frames.

C. Effect of Delay Time on Real-time F0 Prediction Accuracy
In the previous work [16], it has been reported in a spectral

conversion task that the delay time depending on the segment
feature length L in the real-time prediction process requires
around 50 to 70 msec to maintain the conversion accuracy
of the batch-type prediction process. On the other hand, no
previous work has examined the effect of the delay time on
the F0 prediction accuracy. It is possible that longer delay will
be required because F0 is a suprasegmental feature, which has
strong correlation over a wider range compared to segmental
features, such as spectral parameters. This effect is expected
to be stronger in CF0 patterns.

III. DEVELOPMENT OF PROTOTYPE SYSTEM

A. Implementation of Real-Time F0 Control
A prototype system based on our proposed system was

developed using a laptop and a digital/analog (D/A) converter
shown in Table I. As shown in Fig. 1, EL speech produced
from mouth of a laryngectomee is detected with a usual
close-talk microphone. The EL speech signal is recorded on
a laptop and F0 patterns of normal speech are predicted on
the fly by using the real-time statistical F0 prediction. The
predicted F0 values are linearly converted to voltage values
to control the F0 values of the excitation signal generated
by an electrolarynx. Then, an electric signal corresponding
to the determined voltage values is generated with the D/A
converter connected from the laptop to the electrolarynx. The
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Fig. 2. Latency caused by each process

electrolarynx generates the excitation signal with the predicted
F0 values according to the input electric signal generated from
the D/A converter.

As described in the previous section, the F0 patterns are
constantly delayed owing to latency of the real-time statistical
F0 prediction process. Moreover, additional latency is caused
in the prototype system by the D/A converter. Figure 2 shows
latency caused by each step. In our implementation, 50 msec
latency is caused by the real-time statistical F0 prediction. For
the D/A part, it takes around 50 msec to write the digital signal
on the D/A converter, where the digital signal to be written
needs to be determined before starting writing. Consequently,
the D/A part causes 100 msec latency. In total, 150 msec
latency is caused in the prototype system1.

B. Negative Impacts Caused by Latency

The F0 patterns predicted by the prototype system strongly
correlate to those by the simulated system [10], with a
correlation coefficient higher than 0.9. This high correlation
demonstrates that the proposed implementation is effective
and the simulated system is able to effectively approximate
the results of the prototype system. Through the use of
the prototype system, we confirmed that it yields significant
improvements in naturalness of EL speech while preserving its
high intelligibility as expected in the previous evaluation [10].
However, we also found that the naturalness of enhanced EL
speech tends to be lower than that yielded by the batch-type
prediction. We assume that this degradation is caused by 1)
the shorter delay time compared to the required delay time
on the real-time prediction of CF0 patterns, and 2) additional
processing delay of the prototype system. It is necessary to
compare the F0 patterns predicted by the real-time prediction
with those predicted by the batch-type prediction.

TABLE I
ELECTRONIC DEVICES ON THE PROTOTYPE SYSTEM

Electrolarynx Yourtone
Microphone Crown CM-311A

CPU of the laptop Intel(R) Core(TM) i5-4200U
D/A converter AIO-160802AY-USB

1Note that latency in the D/A part could be addressed by the development
of a special device for the electrolarynx. Moreover, we have successfully im-
plemented statistical VC processing on a digital signal processor (DSP) [18].
It is thus expected that all processors could be embedded into the electrolarynx
and total latency will be decreased to the 50 msec caused by the real-time
statistical F0 prediction.
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Fig. 3. a) F0 patterns extracted from normal speech, b) smoothed continuous
F0 patterns interpolated at unvoiced frames, and c) segmented CF0 patterns
of (b) extracted by using the power of waveform.

IV. PROPOSED METHODS FOR ADDRESSING LATENCY
ISSUES

On our prototype system, the produced EL speech suffers
from a misalignment between articulation and the constantly
delayed F0 patterns. To address this issue, we propose two
methods for reducing the delay time caused by the real-time
process while preserving F0 prediction accuracy at the level
of the batch-type prediction process.

A. Segmented Continuous F0 Patterns
In the previous CF0 modeling method, the prediction pro-

cess given in Eq. (1) is performed utterance by utterance.
Because inter-frame correlation over an utterance is considered
in this process, a long delay is required in real-time prediction
to achieve sufficient prediction accuracy.

To reduce the delay time, we propose a segmented CF0

pattern modeling method to make the range of which we
consider inter-frame correlation shorter than an utterance.
Shorter segments are first extracted from each utterance, and
then, CF0 patterns of individual segments (i.e., segmented
CF0 patterns) are modeled and predicted separately. In this
paper, we determine the individual segments by extracting time
frames of which the waveform power is over a pre-determined
threshold. An example of the segmented CF0 patterns is shown
in Fig. 3. Note that the segmented CF0 patterns are still
different from the original F0 pattern, which is segmented by
unvoiced frames, in that 1) the segmented CF0 patterns can
also include unvoiced frames, and thus they tend to be longer
than segments observed in the original F0 patterns, and 2)
each segmented CF0 pattern varied more smoothly than the
original F0 patterns.

B. Forthcoming F0 Prediction
In order to cancel the misalignment between articulation

and the constantly delayed F0 patterns predicted in the real-
time process, we investigate the possibility of predicting
forthcoming F0 values. We train the GMM for modeling the
joint probability density P ([X⊤

t ,Y
⊤
t+F ]

⊤|λ) of the source
features at frame t, Xt and the target features at frame t+F ,
Y t+F . The trained GMM is used to predict the F0 value at F
frames ahead. For example, if the latency of the prototype
system is set to 200 msec, we train the GMM to predict
the F0 values at 200 msec ahead. Consequently, there is no
mismatch between articulation and the predicted F0 patterns.
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It is expected that there is a tradeoff between the prediction
accuracy and the setting of F ; i.e., larger F accepts a longer
delay time in the real-time prediction process, which makes the
real-time prediction accuracy close to the batch-type prediction
accuracy; on the other hand, it is obviously more difficult to
predict F0 values at frames far away from the current one than
those at closer frames.

V. EXPERIMENTAL EVALUATION

A. Experimental Conditions
We conducted four types of objective evaluation to examine

the performance of the developed prototype system and the
effectiveness of the proposed methods. The first evaluation is
a comparison of the prediction accuracy among three types of
F0 pattern modeling, F0, CF0, and the proposed segmental
CF0 (Seg CF0), in the batch-type prediction process. The
second evaluation is a comparison of the accuracy of batch-
type F0 prediction and real-time F0 prediction. The third
evaluation is conducted to examine the effectiveness of the
proposed segmental CF0 modeling method in the real-time
prediction process. The last evaluation is conducted to examine
the effectiveness of the proposed forthcoming F0 prediction
method. The source speech was EL speech uttered by a male
speaker, and the target speech was normal speech uttered by
a professional female speaker. Each speaker uttered about 50
sentences in the ATR phonetically balanced sentence set [19].
We conducted a 5-fold cross validation test in which 40
utterance pairs were used for training, and the remaining 10
utterance pairs were used for evaluation. Sampling frequency
was set to 16 kHz.

We employed FFT analysis with a 25 msec hanning window
to extract the mel-cepstra of EL speech as the spectral param-
eters. The frame shift length was set to 5 msec. As the source
features, the spectral segment features were extracted from the
mel-cepstra at the current ± 4 frames. On the other hand, F0

values of normal speech were extracted with STRAIGHT F0

analysis [20] and CF0 patterns were generated as the target
feature using a low-pass filter with 10 Hz cut-off frequency.
Moreover, the target F0 patterns were shifted so that their
mean value was equal to 100 Hz to predict F0 patterns suitable
for the source male speaker.

B. Comparison of F0 Modeling Methods in Batch-type F0

Prediction
We evaluated the prediction accuracy of each F0 pattern

modeling method in the batch-type process using the correla-
tion coefficient between the predicted F0 pattern and the target
F0 pattern. The number of mixture components of the GMM
was optimized separately in each modeling method.

Table II shows the results as well as the number of mix-
ture components optimized for each modeling method. CF0

yields a significant improvement in the prediction accuracy
compared to the original F0 as reported in [7]. The proposed
segmented CF0 modeling method (Seg CF0) preserves such
an improvement relatively well while minimizing degradation
of the prediction accuracy.

C. Comparison of the Accuracy of Batch-type F0 Prediction
and Real-time F0 Prediction

As mentioned in Section IV-A, it is possible in the real-
time prediction that the larger delay time is required in the
CF0 pattern than in the F0 pattern to achieve the prediction
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Fig. 4. Comparison of the accuracy of batch-type F0 prediction and real-time
F0 prediction.
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Fig. 5. Relationship of the delay time and each F0 pattern on real-time F0
prediction accuracy (w/ delay time correction at the time of evaluation).

accuracy comparable to that of the batch-type prediction. To
examine this possibility, we calculated a correlation coefficient
between the F0 pattern predicted by the real-time prediction
with various settings of the delay time and that by the batch-
type prediction.

The result of a comparison between the CF0 and F0 patterns
is shown in Fig. 4. As for the F0 pattern, even if setting the
delay time to 60 msec (corresponding to L = 5), a quite
high correlation coefficient (around 0.89) is achieved. On the
other hand, as for the CF0 pattern, the predicted patterns are
quite different from those by the batch-type process, showing
that the correlation coefficient is less than 0.8 when setting
the delay time to less than 85 msec. Moreover, its accuracy
convergence is much slower compared to that observed in the
F0 pattern. Consequently, in the CF0 pattern, the delay time
needs to be set to around 250 msec to achieve the prediction
accuracy comparable to that of the batch-type prediction.

D. Evaluation of the Proposed Segmental CF0 Modeling
We evaluated the real-time prediction accuracy of each F0

modeling method using the correlation coefficient between the
predicted F0 pattern and the target F0 pattern. To evaluate only

TABLE II
ACCURACY OF BATCH-TYPE PREDICTION

F0 CF0 Seg CF0

The number of
mixture components 32 16 16

F0 correlation
coefficients 0.40 0.48 0.46
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Fig. 6. Comparison of basic CF0 patterns modeling and forthcoming CF0
patterns modeling (w/o delay time correction at the time of evaluation).

the prediction accuracy, the effect of the misalignment between
the predicted and the target F0 patterns, which is observed
on the prototype system, was removed in this evaluation by
shifting the predicted F0 patterns according to the delay time
settings in calculation of the correlation coefficient.

The results are shown in Fig. 5. As for the F0 pattern,
although the prediction accuracy quickly converges at around
60 msec of the delay time, the resulting correlation coefficient
is lower than 0.4 because the prediction accuracy of the
batch-type prediction is also low, as shown in Table II. As
for the CF0 pattern, the converged prediction accuracy is
significantly higher than that in the F0 pattern, as also observed
in Table II, and its convergence is very slow. To achieve
sufficient prediction accuracy, the delay time needs to be
set to around 250 msec, as also observed in Fig. 4. On the
other hand, the use of the proposed segmented CF0 patterns
makes the convergence faster than that of the CF0 patterns
while preserving its prediction accuracy. Consequently, the
prediction accuracy comparable to the batch-type prediction
can be achieved by setting the delay time to around 150 msec.

E. Evaluation of the Proposed Forthcoming F0 Prediction
We evaluated the real-time prediction accuracy also con-

sidering the effect of the misalignment between articulation
and the delayed F0 patterns predicted in the real-time process,
which was observed in a practical situation, using the correla-
tion coefficient between the predicted F0 pattern without any
correction of the delay time and the target F0 pattern.

The proposed forthcoming F0 prediction method was ap-
plied to the CF0 pattern and its effectiveness was examined.
The result is shown in Fig. 6. If not using the proposed
forthcoming F0 prediction, the delay time is set to longer,
the prediction accuracy gets lower. This result shows that the
adverse effect of the misalignment on the actual prediction
accuracy is significantly large. This issue is well addressed by
using the proposed forthcoming F0 prediction. Consequently,
by setting the delay time to around 250 msec, the real-time pre-
diction with the proposed forthcoming F0 prediction method
makes it possible to achieve prediction accuracy comparable
to that of the batch-type prediction.

VI. CONCLUSION

In this paper, we have examined negative impacts caused by
latency of the real-time prediction on F0 prediction accuracy,
and to alleviate them, we have also proposed two methods, 1)
modeling of segmented continuous F0 (CF0) patterns and 2)
prediction of forthcoming F0 values. The experimental results

have demonstrated that 1) the conventional real-time prediction
needs a large delay to predict CF0 patterns and 2) the proposed
methods have positive impacts on the real-time prediction.
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