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ABSTRACT

This paper considers the Unit-modulus Least Squares (ULS)

problem, which is commonly seen in signal processing ap-

plications, e.g., phase-only beamforming, phase retrieval and

radar code design. ULS formulations are easily reformulated

as Unit-modulusQuadratic Programs (UQPs), to which Semi-

Definite Relaxation (SDR) can be applied, and is often the

state-of-the-art approach. SDR has the drawback of squar-

ing the number of variables, which lifts the problem to much

higher dimension and renders SDR ill-suited for large-scale

ULS/UQP. In this work, we propose first-order algorithms

that meet or exceed SDR performance in terms of (approx-

imately) solving ULS problems, and also exhibit much more

favorable runtime performance relative to SDR.We specialize

to phase-only beamformer design, which entails additional

degrees of freedom that we point out and exploit in two cus-

tom algorithms that build upon the general first-order algo-

rithm for ULS/UQP. Simulations are used to showcase the

effectiveness of the proposed algorithms.

1. INTRODUCTION

There exist many applications in which Unit-modulus Least

Squares (ULS) problems arise, notably in signal process-

ing, wireless communications, and radar [1–5]. ULS prob-

lems can be algebraically transformed into Unit-modulus

Quadratic Programs (UQPs), and vice-versa; therefore, algo-

rithms designed for ULS can be used for UQP, and vice-versa.

Unfortunately, the general ULS/UQP problem is non-convex

and NP-hard [6]. Arguably the most popular approach is

to pose ULS/UQP as a Quadratically Constrained Quadratic

Program (QCQP), to which Semi-Definite (rank) Relaxation

(SDR) can be applied [7]. After finding an optimal solution

to the relaxed convex problem, a feasible solution to the orig-

inal UQP problem is constructed following some standard

procedures, e.g., randomization [7].

Computational complexity is the main challenge in ap-

plying SDR to ULS/UQP. If the original ULS/UQP problem

has N optimization variables, SDR requires lifting the op-

timization problem to N2 dimensions. This lifting results
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in O(N6.5) complexity if the relaxed problem is solved by

interior-point methods, which may render the problem im-

practical for large problem size. In addition, squaring the

number of variables is memory-inefficient – storing N2 vari-

ables is not an easy task when N is large. On the other

hand, large-scale ULS/UQP arises increasingly often in signal

processing. For example, massive Multiple-Input-Multiple-

Output (MIMO) communication systems have recently drawn

much attention, as employing large-scale antenna arrays en-

ables multi-faceted performance improvements [8]. Phase re-

trieval and radar code design are also likely to require high-

dimensional optimization. Therefore, it is well-motivated to

find alternatives to SDR.

In this paper, we propose to employ a gradient projection

(GP)-based algorithm to tackle the ULS/UQP problem. GP

remains in the original problem domain without lifting the

number of variables, and thus is considered more efficient in

terms of both memory and simplicity of computation. Un-

like the classical GP algorithm that in general works on con-

vex constraint sets, the proposed algorithm works with the

non-convex element-wise unit modulus constraint, i.e., ev-

ery scalar variable is constrained to lie on the unit circle in

the complex plane. Nevertheless, since projection onto the

unit modulus constraint is computationally easy, the simplic-

ity of the classical GP is maintained in our case. The diffi-

culty is that non-convex constraints are in general considered

not suitable for GP, since projection onto such sets may in-

crease the cost function. Interestingly, without resorting to

monotonic decrease, we still show that the proposed algo-

rithm converges to a Karush-Kuhn-Tucker (KKT) point. We

also specialize the GP idea to a phase-only array beamform-

ing problem [4, 5, 9] that has significance in massive MIMO

and radar design, and provide two different modified algo-

rithms that aim at enhancing performance in this specific ap-

plication. Simulations are performed to showcase the effec-

tiveness of the algorithms.

2. PROBLEM STATEMENT

What is known as phased-array beamforming generally as-

sumes control of both magnitude and phase for each antenna,

but here we are interested in phase-only beamforming, which
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only controls the phase of each antenna. This allows using

only one power amplifier that is common to all antennas (in-

stead of separate per-antenna amplifiers), and also avoids the

high peak-to-average power ratio (PAPR) problem across an-

tennas, which is important in massive MIMO communication

systems [8]. For simplicity of exposition, let us consider a

Uniform Linear Array (ULA) containing N antennas with

equidistant spacing (λ/2, where λ denotes the carrier fre-

quency). Let θ = [0, 2π
M
, 4π
M
, . . . , 2(M−1)π

M
]T . In a ULA sce-

nario, theN×1 steering vectors have Vandermonde structure
a(θi) = [1, e−jθi , e−j2θi , . . . , e−j(N−1)θi ]T . The phase-only
beamformer design problem can be formulated as the ULS

min
w∈CN

‖y −Aw‖22 (1)

subject to |wi| = 1, i = 1, . . . , N,

wherew is a prescribed spatial response pattern (see Sec. 3.2),

A = [a(θ1), . . . , a(θM )]H , (2)

with (·)H denoting Hermitian (conjugate transpose),w is the

sought beamforming vector, and wi the i-th element ofw.

2.1. ULS and UQP Preliminaries

Although the beamformer design problem is expressed as

ULS in (1), any ULS can be recast as a UQP, and vice versa.

Consider the ULS optimization problem in (1), whose cost

function can be expressed as

[

wH 1
]

[

AHA −AHy
−yHA 0

] [

w

1

]

(3)

where the (constant) yHy term has been discarded. Hence,

we may equivalently rewrite (1) as

min
w̃∈CN+1

w̃HRw̃ (4)

subject to |w̃i|
2 = 1, i = 1, . . . , N ; w̃N+1 = 1,

where w̃ = [w, 1]T andR denotes the matrix in the middle of

(3). We may in fact relax the last constraint from w̃N+1 = 1
to |w̃N+1|

2 = 1 without loss of generality, and thus Prob-

lem (4) becomes a standard UQP problem. Note that although

R as defined above may not be positive semi-definite (PSD),

we can easily render the cost function convex via diagonal

loading without changing the optimization problem. Con-

versely, any UQP can be cast as a ULS; for PSD R in (4),

we have

w̃HRw̃ =
[

wHe−jθ e−jθ
]

[

AHA −AHy
−yHA c

] [

wejθ

ejθ

]

=wHAHAw − yHAw −wHAHy + c. (5)

Setting c = yHy, the problem can be expressed as in (1).

2.2. Semidefinite Relaxation for UQP/ULS

To deal with UQP (and thus ULS by the equivalence), the

most popular approach is arguably semidefinite relaxation

(SDR) [7]. The SDR procedure can be described as follows.

Consider the UQP problem

min
w∈CN

wHRw (6)

subject to |wi|
2 = 1, i = 1, . . . , N,

whereR is positive semi-definite, which ensures that the cost

function is convex. This problem is still non-convexdue to the

element-wise Unit-modulus constraints on w [10]. Writing

wHRw = Trace(wHRw) = Trace(RwwH), we can define
a matrixW := wwH and equivalently write (6) as

min
W

Trace(RW) (7)

subject to Wii = 1, i = 1, . . . , N

W = wwH .

The constraintW = wwH is equivalent toW " 0 (positive
semi-definite) and rank(W) = 1. The rank(W) = 1 con-

straint is non-convex; dropping it yields a relaxation form that

is convex. However, the optimalWo of the relaxed problem

will (in general) not be rank one. To extract a feasible solu-

tion of (6) fromWo, we follow the randomization procedure

in [11]: We first extract the principal component ofWo; then,

we generate L candidate random vectors via ζℓ = UΣ
1/2vℓ,

for ℓ = 1, . . . , L, where each vℓ is independently chosen from
a circularly symmetric zero-mean complex Gaussian distri-

bution of unit variance, withWo = UΣUH signifying the

eigendecomposition ofWo. Then each ζℓ is projected onto

the feasible set via ŵℓ = ej∠(ζℓ), for ℓ = 1, . . . , L, where
∠(·) denotes the element-wise angle of the argument, and the
cost of (6) is evaluated at this ŵℓ. Finally, the ŵℓ that yields

the smallest cost is chosen as the approximate solution.

3. PROPOSED APPROACH

3.1. Gradient Projection for ULS

Although the ULS problem in (1) can be approximated us-

ing SDR, SDR is computationally expensive and memory-

inefficient. Previous works on phase-only beamforming [4,9]

instead considered an explicit wi = ejθi parametrization

of the unit modulus constraint, and proposed using uncon-

strained derivative-based methods, such as gradient descent

and Newton’s method to address the optimization problem.

However, such a parametrization awkwardly changes the cost

function from a nice quadratic convex function to a non-

convex one, and does not seem to work well for this problem.

Different from earlier attempts, we propose keeping the unit

modulus constraint and using projected gradient descent in-

stead of unconstrained gradient descent. The details are

provided in Algorithm 1.

2016 24th European Signal Processing Conference (EUSIPCO)

1379



Algorithm 1 Gradient Projection

1: Initialization: Set k = 0, α = 1
λmax(AHA)

, w0 = A
†y

2: Repeat

3: ζk+1 = wk + αAH(y −Awk) (gradient descent);
4: wk+1 = ej∠(ζk+1) (projection);
5: k = k + 1;
6: until convergence

Algorithm 1 is nothing but a GP algorithm – what is spe-

cial is that the projection step involves a non-convex set – the

element-wise unit modulus constraint, in particular. In Algo-

rithm 1, λmax(X) denotes the principal eigenvalue ofX, and
α is the step size along the opposite direction of the gradient.

Themotivation of Algorithm 1 is simple: gradient descent has

the advantage of scalability, and is able to explore data spar-

sity. In addition, it is much more memory-efficient relative

to SDR. These traits are well-suited for large-scale problems.

In addition, projection onto a unit modulus constraint admits

a closed-form solution (cf. line 4 in Algorithm 1), and the

entire procedure can be carried out very efficiently. On the

other hand, the concern is that projection onto a non-convex

set may in fact increase the cost value, and thus tends to be

problematic in terms of optimization. Nonetheless, regarding

convergence, we have shown that

Proposition 1 For α ≤ 1
λmax(AHA) , every limit point of

{wk}k=1,2,... produced by Algorithm 1 is a Karush-Kuhn-

Tucker (KKT) point of Problem (1).

We relegate the proof to a forthcoming journal version [12]

due to space limitations. We remark that the convergence

result is of broad interest: Since ULS/UQP has a large va-

riety of applications such as multiuser detection [1], phase

retrieval [3], and source localization [2], GP can be applied to

these applications when the problem dimension grows large –

and convergence to a KKT point can be guaranteed.

3.2. GP with Automatic Scaling for Beam Pattern Design

Algorithm 1 is simple and effective in addressing general

ULS/UQP problems, as we will show in Sec. 4. However,

in the beamformer design problem, there is a subtle factor

that greatly affects the performance, namely, the scaling of

y. To explain, consider the following choice of y for receive

beamformer design:

yi =

{

1 if i ∈ J ,

0 otherwise,
(8)

where J denote the set containing the indices i correspond-
ing to the direction(s) of interest in θ. The y in (8) speci-

fies the beampattern that we want to produce. However, note

that |aH(θi)w|=|
∑N

j=1 a
∗
j (θi)wj |≤

∑N

j=1 |a
∗
j (θi)wj | = N ,

and, from the Cauchy-Schwartz inequality, the maximum is

achieved if and only ifw = ejφa(θi). Therefore, setting yi to
N seems to be a better choice when one is interested in beam-

forming to only one angle. In practice, it is more common

that multiple angles are of interest, and the ‘optimal scaling’

of y is unclear under such circumstances. To compensate for

this, we can introduce an additional scaling variable s ∈ C to

obtain

min
w∈CN ,s∈C

‖y− sAw‖22 (9)

subject to |wi| = 1, i = 1, . . . , N.

Variable s can be regarded as an ‘automatic normalization’

factor, which fixes the aforementioned scaling issue. Note

that, by separability, we may compute and substitute the opti-

mal s as a function ofw:

sopt =
wHAHy

‖Aw‖2
, (10)

Using (10), we can ‘embed’ the tuning of s in each itera-
tion of Algorithm 1, leading to Algorithm 2. This modified

algorithm can be considered as an alternating optimization

(AO) with respect to (w.r.t.) w and s. For the subproblem

w.r.t. w, we solve it inexactly by taking a GP step. Since s
can be easily computed, Algorithm 2 has only marginal com-

plexity increase relative to Algorithm 1, but can better address

the scaling problem in beam pattern design.

Algorithm 2 GP with AO on (w, s)

1: Initialization: Set k = 0,w0 = A
†y

2: Repeat

3: sk+1 = w
H
k A

Hy/‖Awk‖
2
2;

4: αk+1 = 1/λmax(|sk+1|
2AHA);

5: ζk+1 = wk + αk+1s
∗
k+1A

H(y − sk+1Awk);

6: wk+1 = ej∠(ζk+1);
7: k = k + 1;
8: until convergence

3.3. Exploring Additional Degrees of Freedom

At this point it is worth highlighting an important difference

between transmit and receive beamforming. In the receive

beamforming scenario, we may be required to control the

phase response as a function of θ, e.g., for phase coherence
or constructive combining of specular multipath components.

In transmit (including multicast) beamforming, however, it is

sufficient to specify a desired magnitude for each direction or

general channel vector of interest, as the receiver will have to

perform any necessary phase estimation/correction anyway,

due to local oscillator phase mismatch. We can mathemati-

cally model this situation by considering the modified opti-

mization problem

min
w∈CN ,θ∈RM ,s∈C

‖y ⊛ ejθ − sAw‖22 (11)

subject to |wi| = 1, i = 1, . . . , N,
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where ⊛ denotes the Hadamard (element-wise) product, and

θ represents the additional degrees of (phase response) free-

dom. Let u = ejθ; we can equivalently express (11) as

min
w∈CN ,u∈CM ,s∈C

‖Yu− sAw‖22 (12)

subject to |wi| = 1, i = 1, . . . , N,

|ui| = 1, i = 1, . . . ,M,

whereY = Diag(y). Performing alternating optimization on
w, u and s (projectingw and u onto the Unit-modulus space

after each iteration), we obtain the following algorithm:

Algorithm 3 GP with AO on (w, u, s)

1: Initialization: Set k = 0, obtain initial w0 from Algo-

rithm 2, initialize u0 = ξ0 = 1, β = 1/λmax(Y
HY)

2: Let J = {i : yi %= 0},Y = Diag(y), Ỹ = Diag(y(J ))
3: Repeat

4: sk+1 = wH
k A

HYuk/‖Awk‖
2
2;

5: αk+1 = 1/λmax(|sk+1|
2AHA);

6: ζk+1 = wk + αk+1s
∗AH(Yuk − sAwk);

7: wk+1 = ej∠(ζk+1);

8: ξk+1 = ξk;

9: ξk+1(J ) = uk(J )−βỸH (Ỹuk(J )−sA(J , :)wk+1);
10: uk+1 = ej∠(ξk+1);

11: k = k + 1;
12: until convergence

Note that for the u update, only the elements correspond-

ing to the non-zero values of y are of interest. As such, the

set J has been defined as the set of indices where yi %= 0 and
A(J , :) denotes a matrix comprised of the rows of A cor-

responding to the indices in J . Thus, only the elements of

u(J ) are updated (steps 9 and 10 of the algorithm).

4. SIMULATIONS

We first compare the performance of Algorithm 1 and SDR

for solving a general ULS problem. Then, we use simula-

tions to demonstrate the effectiveness of Algorithms 2-3 in

the phase-only beamforming problem. In the simulations, the

benchmarked algorithm is an alternating optimization-based

algorithm for solving the SDR form of UQP [13]. This al-

gorithm exhibits much more favorable runtime performance

compared to interior-point based solvers, and thus will be re-

ferred to as FastSDR. We stop the GP algorithms when ‖wk−
wk−1‖2/‖wk‖2 < 10−6. The results are all averaged over
100 independent Monte Carlo trials.

Fig. 1 compares the GP algorithm for general ULS/UQP,

i.e., Algorithm 1 with FastSDR, for N = 2, . . . , 200. For

testing purposes, we draw y = Aw + n, where n is cir-

cularly symmetrical zero-mean unit-variance i.i.d. Gaussian

noise. Here, we set M = 144 and SNR= 10dB, and ob-

serve the mean-squared-error (MSE) of the estimated ŵ as

performance measure. The Cramér-Rao bound (CRB) is also

presented as a baseline. We see that GP exhibits better MSE

performance relative to FastSDR in this simulation, which is

rather encouraging. Furthermore, GP is more than 10 times

faster than FastSDR for allN considered, see Fig. 2. Note that

FastSDR is known to be a surprisingly fast algorithm for ap-

proximating UQP, and our results show that GP is even more

promising in dealing with ULS/UQP.

Figs. 3-4 present a simulation of phase-only beamform-

ing for a ULA. A is specially structured (Vandermonde and

unit modulus) in this case. We compare the modified ver-

sions of GP, i.e., Algorithms 2-3 with FastSDR in this simula-

tion. The angle space is discretized intoM = 36 regions, and
N = 2, . . . , 200 antennas are considered. For each problem
instance, we randomly draw K = 2 angles from θ, and then

construct y in accordance with (8). As shown in Fig. 3, Algo-

rithm 2 performs comparably with FastSDR forN ≤ M , and

increasingly outperforms FastSDR for N > M in terms of

least squares cost. Note that it is challenging to incorporate an

automatic scaling factor in SDR, and this may explain the per-

formance of FastSDR – it also serves as evidence that adding

s to the formulation is much helpful in this special ULS prob-
lem. Algorithm 3 yields even slightly lower costs compared

to that of Algorithm 2 since it explores additional degrees of

freedom. The difference becomes significant when y contains

many non-zeros, as in sector beamforming, because the num-

ber of additional degrees of freedom is equal to the number of

nonzero elements of y (since the phase response can only be

set where the target magnitude response is non-zero). We also

see that the cost values obtained by the proposed algorithms

are much closer to the SDR lower bound (which is obtained

from the relaxed UQP problem without converting the solu-

tionWo to a rank-one matrix).

Fig. 4 shows the runtime performance of the algorithms.

We see that both Algorithm 2 and Algorithm 3 significantly

outperform FastSDR.

5. CONCLUSION

In this paper we considered a simple gradient projection-

based algorithmic framework for addressing the ULS / UQP

problem, and specialized the algorithm to the application of

phase-only beamforming that is motivated by in large-scale

radar code design and massive MIMO applications. Many

other applications exist, such as phase retrieval, multiuser

detection, and sensor network localization, see [1, 2, 10] and

references therein. The proposed GP algorithm has been

proven to converge to a KKT point of the original NP-hard

problem (see the journal version [12]). This is interesting

because of the associated projection onto a non-convex set,

and no analogous convergence result was previously avail-

able. The proposed algorithms were carefully compared

against state-of-art methods based on SDR, and were found

to perform at least as well in terms of least squares cost /

mean squared error, and even better in several scenarios at

significantly lower runtime complexity.
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Fig. 1. The MSEs of Algorithm 1 and FastSDR under various

N ’s; SNR= 10dB.
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