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Abstract—This paper describes how to construct a probability
map using sparse representation and dictionary learning to
indicate the probability of each optic disk pixel of belonging to the
optic cup. This probability map will be used in the future as input
to a method for automatically detecting glaucoma from color
fundus images. The probability map was obtained constructing
a model (using the Bayes classifier) which takes into account
texture information, by means of sparse representation and RLS-
DLA dictionary learning technique, and intensity information.
Several experiments on a private database are presented in this
work. The results are compared with the segmentation made
by specialists, highlighting the promising performance of this
technique in difficult cases where the optic cup is barely visible.

I. INTRODUCTION

Glaucoma is a progressive disease of the optic nerve caused
by high intraocular pressure due to a bad drainage of the ocular
fluid. Clinically, it causes a progressive and irreversible loss of
the visual field that progresses to the complete loss of vision.
It is currently the second leading cause of blindness worldwide
and affects one in every hundred people under 50 and one in
ten over 80 years [1]. In most cases, glaucoma is belatedly
detected when visual field loss is irreversible. Currently, there
is no cure for glaucoma damage and, therefore, early detection
and prevention is the only way to prevent progression to total
vision loss.

The optic nerve damage is manifested in a change in the
appearance of the optic cup, so that the ratio between the
optic cup and optic disk area, also known as cup-to-disk ratio
(CDR), is related to the presence or absence of glaucoma.
For healthy patients, CDR falls in the range of 0.3 to 0.5
and for glaucoma it is higher than 0.5. The sight of vision is
completely lost at the CDR value of 0.8 [2]. An example of
the difference between a fundus with and without glaucoma
is illustrated in Fig. 1.

The state-of-the-art methods for cup detection are usually
based only on intensity features using different segmentation
methods such as level-sets methods [3], superpixel classifi-
cation [4], cup segmentation using r-bends information or
vessel geometry and Hough transforms [5]. These methods are
based on intensity and does not take texture information into
account. When the optic cup is barely visible, these methods
usually produce segmentation errors. Moreover, this kind of

(a) (b)
Fig. 1. Glaucoma effects on the cup-to-disk ratio: (a) Healthy fundus and (b)
Glaucomatous fundus. Optic disk is marked in green and optic cup in blue.

algorithms produces a binary image which indicates if a pixel
belongs to the cup or not. Our aim in this work is double: to
include texture in the cup identification process and to define
a probability for each pixel of being cup or no cup that can be
used as a feature in a glaucoma detection algorithm. So, this
paper focuses on optic cup characterization by using dictionary
learning and sparse representation techniques. In particular, the
image database was divided into two subsets: training and test.
Training images were used to generate two dictionaries within
the optic disk (cup and no-cup) through dictionary learning
techniques. From these dictionaries, intensity and texture in-
formation were extracted. In the proposed approach, texture
information was obtained by reconstructing the image through
its sparse representation with the created dictionaries. Making
use of texture and intensity information, a classification model
was built. This model is used on test images to obtain a
probability map that indicates the probability of belonging to
the optic cup for each pixel in the optic disk.

The rest of the paper is organized as follows: Section II
describes the material and methods used. Section III addresses
the method proposed for optic cup characterization. Section IV
shows the results obtained by the method. Finally, Section V
closes the paper with the conclusions and future work lines.

II. MATERIAL AND METHODS

A. Material

The material of this work are images with the optic disk
(OD) and the optic cup (OC) previously segmented by spe-
cialists composing the ground truth. The dataset was composed
of 53 fundus images belonging to Hospital 12 de Octubre from
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Madrid (Spain) [6]. 23 of them were normal (without known
pathology) and the remaining 30 images were classified as
glaucomatous.

This dataset was randomly divided into two subsets: training
and test. The training set contains 70% of the images and the
test set the remaining 30%, i.e. 37 images for training and 16
for testing.

B. Principal Component Analysis

The central idea of principal component analysis (PCA) is to
reduce the dimensionality of a data set consisting of a number
of interrelated variables, while retaining as much as possible
of the variation present in the data set. This is achieved
by transforming to a new set of variables, the principal
components (PCs), which are uncorrelated, and ordered so that
the first few retain most of the variations present in all of the
original variables [7].

A three-channel image transformed to a principal com-
ponent space creates three new channels in which the first
(the most significant) contains the most structural contrast
and information. The rank for each axis in the principal set
represents the significance of that axis as defined by the
variance in the data along that axis. Thus, the first principal
axis is the one with the highest amount of scatter in the
data and consequently the greatest amount of contrast and
information, while the last principal axis represents the least
amount of information such as noise and image artefacts [8].
In this case, the kth PC, zk, is given by

zk = αk
′f = αkR

fR + αkG
fG + αkB

fB , (1)

where f(x) = (fR(x), fG(x), fB(x)) represents a RGB im-
age, αk is a vector of constants, ′ denotes transpose and
k ∈ {1, 2, 3}. Specifically, principal-component axes (αk) will
be the eigenvectors of the covariance matrix.

C. Sparse Representation

Sparse representation is a signal model that suggests that
a signal can be represented sparsely in a domain, usually
represented by atoms collected as columns in a dictionary
matrix. The dictionary D is a matrix N ×K, which contains
K prototype signals of length N , also referred to as atoms.
The model assumes that for any signal x, there exists a sparse
linear combination well approximated of atoms from D. The
approximation of x can be written as

x ≈ Dw, ‖w‖0 � N (2)

where w is a vector containing the coefficients. Most of the
entries in w are zero and the operator ‖.‖0 counts the number
of non-zero elements in the vector. Typically it is assumed that
the dictionary is redundant in describing x.

So, given the dictionary D, the approximation x̂ of signal
x can be written as x̂ = Dw, and the representation error or
residue can be written as r = x− x̂ = x−Dw. Most of the
entries of w are zero, s is the number of non-zero coefficients,
and s/N is the sparseness factor.

A common way to find w, i.e the sparse approximation
problem, is solving the following equation:

wopt = argmin
w
{‖w‖p + γ‖x−Dw‖22}, p ∈ {0, 1}. (3)

The problem with p = 0 (to minimize the number of non-
zero coefficients) is NP-hard, but an approximate solution
can be found by greedy methods. Alternatively the problem
can be relaxed by setting p = 1 (to minimize the sum of
absolute values) providing a convex problem that can be solved
(LASSO) [9]. Both problem resolutions start with an all zero
vector w, which is the solution when γ is close to zero. As
γ factor increases the solution is getting more dense. In this
work, SPAMS library, SPArse Modeling Software [10], was
used to solve this problem.

D. Dictionary Learning

Dictionary Learning is often formulated as the problem of
finding a dictionary such that the approximations of many
vectors, the training set, are as good as possible given a
sparseness criterion on the coefficients, i.e. allowing only a
small number of non-zero coefficients for each approximation.
Let X be a matrix containing K signals to be represented.

A common set up for the dictionary learning problem starts
by obtaining a training set, a collection of training vectors,
each of length N . The training vectors are usually K vectors
collected from matrix X , resulting a training set of size N×K.
The aim of dictionary learning algorithms is to find both a
dictionary Dopt of size N × L and a corresponding set of
coefficients Wopt of size K × L such that the representation
error is minimized and Wopt fulfils the imposed sparseness
criterion. This optimized dictionary Dopt is composed by the
L most representative atoms, being L = 2N .

The dictionary learning problem can be formulated as an
optimization problem with respect to the coefficient matrix
W and the dictionary D as:

{Dopt,Wopt} = argmin
D,W

K∑
i=1

‖wi‖p + γ‖X −DW‖2. (4)

Different methods have been proposed to solve the previous
optimization problem [11]–[14]. In this work, the Recursive
Least Squares Dictionary Learning Algorithm (RLS-DLA)
[15] was used. In this method, a single training vector xi or a
mini-batch (subset) of X is processed in each iteration solving
the following equation:

Di = BiA
−1
i , being

{
Ai = λiAi−1 +WiW

T
i

Bi = λiBi−1 +XiW
T
i

(5)

where A1 =W1W
T
1 and B1 = X1W

T
1 . The current dictionary

Di−1 is used to find the corresponding coefficients Wi.
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III. PROPOSED METHOD

A. Pre-processing

Since we are only interested in the optic disk area, the rest
of the image is removed remaining only that area of interest,
using the manual segmentation of the optic disk provided
by the specialists. The goal of this step is to reduce the
computational cost.

After image cropping, PCA is applied to transform the
input image to grey scale. This technique combines the most
significant information of the three components RGB in a
single image so that the structures of the retina are better
appreciated. As seen in Subsection II-B, the first PC is the
most significant so, z1, defined as equation (1), is chosen as
the input image of the method presented in this paper.

B. Dictionary generation

First, two dictionaries Dc and Dnc are generated, where
Dc is a dictionary trained for representing the optic cup area
and Dnc is a dictionary trained for representing the optic
disk area without considering the optic cup. Both dictionaries
are generated from the information provided by the training
images on which these structures were previously segmented
by a specialist (Fig. 2).

(a) (b) (c) (d)
Fig. 2. Significant image areas: (a) Region of interest of the original image,
(b) Region of interest of the first PC (z1), (c) Optic cup area and (d) Optic disk
area (no cup). (c) and (d) images were obtained using the cup segmentation
ground truth.

Image blocks of
√
N×
√
N pixels are selected in both areas

and reshaped into a column of length N . Image blocks are se-
lected through a sliding window using maximum overlapping
by sliding only one pixel position at the time. This process is
shown in Fig. 3(a).

...

K

N

L = 2N

N

(a) (b)
Fig. 3. Dictionary generation process: (a) Original training set and (b) Learned
dictionary Dopt.

All the information extracted from the training images is
stored in a training set X . Note that the boundary pixels
between cup and no-cup areas are excluded from the training
set. The dictionaries are initialized by using L=2N normalized

example vectors from the training set (randomly chosen).
All training vectors are used in the learning process. Dictio-
nary learning technique is applied to use only relevant and
necessary information. In particular, RLS-DLA is used (see
Subsection II-D). λ is initialized to 0.995 and slowly increased
to 1. The result of this algorithm is a learned dictionary as it
is represented in Fig. 3(b).

C. Feature extraction

After dictionary generation, the following features are ex-
tracted:

1) Texture extraction: Texture extraction is performed by
computing the residue of the image after sparse representation
using the learned dictionaries. For each pixel (i, j) in the input
test image Im, a test vector, xi,j is formed by the column
stacking of the

√
(N)×

√
(n) neighborhood around the pixel

(i, j). A sparse representation of xi,j is found using Dc in
equation 3, giving x̂ci,j and the corresponding residual rc =
||xi,k − x̂ci,j || placed in the right position in a residual image:
Rc(i, j) = rc. The same is done using Dnc, giving a different
residual image, Rnc.

We expect the residual value at a specific pixel position
inside the optic cup to be lower in the Rc image, and for
a pixel position outside the optic cup we expect the residual
value to be lower in the Rnc image. By nature, texture is a
regional property that should not change pixel by pixel. This
suggests a smoothing of the residue images. So, previously
to the texture feature image computation, each residue image
is filtered with a low-pass Gaussian filter of size 9 × 9 and
variance 5 [16]. Finally, Rc and Rnc are combined to calculate
the texture feature image, Ft, as:

Ft =
Rnc

Rnc +Rc
. (6)

Ft is an image with the same size as the input image,
providing a textural feature for each pixel. High values of
Ft would suggest that the corresponding pixel belongs to the
optic cup and low values suggest that the pixel is outside the
optic cup.

2) Intensity extraction: The intensity feature corresponds
with the intensity level of each image pixel calculated within
a neighborhood. Thus, the original grey-scale image is filtered
with a low-pass filter of size 3× 3 giving an intensity feature
value for each pixel of the input image. These values are
normalized by subtracting the mean and dividing by the
standard deviation giving place to the final intensity feature
Fi.

D. Classification model

The two feature images extracted form the training images
(Ft and Fi) are used to generate a model from Bayes classifier.
As Bayes classifier uses supervised learning, optic cup masks
are also needed to indicate the cup area.

Once the model is created, Ft and Fi feature images must be
computed for each test image giving a feature vector for each
pixel. These feature vectors are fed through the classifier, and

2016 24th European Signal Processing Conference (EUSIPCO)

1690



the output is interpreted as a a posteriori probability rather
than a binary class label. The output probabilities from the
classifier are reorganized as an image, providing a probability
map for each image [17]. This map shows the probability of
each pixel of belonging to the optic cup.

IV. RESULTS

The performance of the proposed procedure for optic cup
characterization was evaluated on the private image database
described in Subsection II-A. Different experiments were
conducted to find out the best configuration of the proposed
method. The first experiment tests different block sizes (3×3,
5×5 and 8×8) for the generation of Dc and Dnc dictionaries.
Fig. 4 shows the obtained results. Red color corresponds to a
high probability for that pixel to belong to the optic cup, and
dark blue to a low probability. Size 5 × 5 obtained the best
results determined by visual inspection and this size is a trade-
off between the cup area and the definition of its border. The
second experiment tests two classification models, the first of
them considers only intensity information (Fi) and the second
one combines intensity and texture information (Fi + Ft). In
Fig. 5 probability maps obtained for both classification models
are depicted. The probabilities for pixels belonging to the
optic cup are higher in the probability maps obtained using
the multivariate model.

(a)

(b)

(c)

(d)
Fig. 4. Probability maps with different block sizes on 4 images (a-d). First
column: Original image. Second column: 3× 3 blocks. Third column: 5× 5
blocks. Forth column: 8× 8 blocks.

Finally, in Fig. 6, several resulting probability maps, for
multivariate model and 5× 5 block size, of the optic cup can

(a)

(b)

(c)
Fig. 5. Probability maps with different models on 3 images (a-c). First
column: Original image. Second column: Fi model. Third column: Fi + Ft

model.

be observed and compared with the manual cup segmentation
provided by an expert (ground truth). In addition, Fig. 7
demonstrates how the proposed method is able to identify the
optic cup in healthy and glaucomatous images despite the fact
that in some of the healthy images the optic cup is barely
visible on the original images.

Fig. 6. Manual segmentation and probability maps of the optic cup.
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(a) (b)
Fig. 7. Optic cup probability maps on different images: (a) Healthy images
and (b) Glaucomatous images.

V. CONCLUSION

In this paper, a new approach for optic cup characterization
was presented. It is based on using sparse representation,
dictionary learning and machine learning to determine the
probability that a pixel within the optic disk belongs to the
optic cup. Distinguishing between optic disk and optic cup
pixels is required for example for computing the cup-to-disk
ratio used for glaucoma diagnosis.

The main characteristic of this work is the combination of
intensity and texture information for optic cup identification
which allows to enhance the cup although in the RGB image
was not too visible.

As future work, the probability map of the optic cup
obtained with the proposed method will be used as a feature
in a glaucoma detection algorithm. Moreover, other dictionary
learning algorithms will be used to compare all of them and
choose the most efficient.
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E. López Guillén, J. Campos Pavón, L. de Pablo Gómez de Liaño,
D. Escot Bocanegra, L. de Santiago, and M. Ortiz, “Color analysis
in retinography: Glaucoma image detection,” in XIII Mediterranean
Conference on Medical and Biological Engineering and Computing
2013, vol. 41 of IFMBE Proceedings, pp. 325–329. 2014.

[7] I. T. Jolliffe, Principal Component Analysis, Springer, second edition,
2002.

[8] J. C. Russ, Image Processing Handbook, CRC Press, Inc., 5th edition,
2007.

[9] Robert Tibshirani, “Regression shrinkage and selection via the lasso,”
Journal of the Royal Statistical Society. Series B (Methodological), pp.
267–288, 1996.

[10] J. Mairal, F. Bach, J. Ponce, G. Sapiro, R. Jenatton, and G. Obozinski,
“Spams v2.5 (sparse modeling software),” http://spams-devel.gforge.
inria.fr/index.html, 2014.

[11] K. Engan, S.O. Aase, and J. Hakon Husoy, “Method of optimal direc-
tions for frame design,” in Acoustics, Speech, and Signal Processing,
1999. Proceedings., 1999 IEEE International Conference on, 1999,
vol. 5, pp. 2443–2446 vol.5.

[12] M. Aharon, M. Elad, and A. Bruckstein, “k -svd: An algorithm for
designing overcomplete dictionaries for sparse representation,” Signal
Processing, IEEE Transactions on, vol. 54, no. 11, pp. 4311–4322, 2006.

[13] K. Engan, K. Skretting, and J. Hȧkon Husoy, “Family of iterative ls-
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