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Abstract—Adaptive filters that employ sparse constraints or

maximum correntropy criterion (MCC) have been derived from

stochastic gradient techniques. This paper provides a determin-

istic optimization framework which unifies the derivation of such

algorithms. The proposed framework has also the ability of

providing geometric insights about the adaptive filter updating.

New algorithms that exploit both impulse responses sparsity and

MCC are proposed, and an estimate of their steady-state MSE

is advanced. Simulations show the advantages of the proposed

algorithms in the identification of a sparse system with non-

Gaussian additive noise.
Index Terms—Adaptive filtering, maximum correntropy cri-

terium, sparse impulse response, mean-square analysis.

I. INTRODUCTION

Adaptive filters have proved useful in several challenging

and crucial tasks, such as system identification, echo cancel-

lation and channel equalization [1]. In some sense, much of

the recent developments in the area of adaptive filtering lies

in the exploitation of some inherent structural properties of

the problem, as the sparsity of the impulse response to be

identified [2]. Such sparsity occurs, for example, in digital TV

transmission channels [3], in echo paths [2], and in underwa-

ter acoustic communication channels [4]. Another approach

explores nonlinear or non-Gaussian scenarios which revealed

the relevance of the maximum correntropy criterion [5]. It

is noteworthy that correntropy is a generalized correlation

measure that includes information about the distribution and

the time structure of a stochastic process [6].

In the adaptive filtering context we are interested in the

adaptive vector w(k) ∈ R
N , which should emulate an ideal

and unknown vector wo ∈ R
N , by reducing the discrepancy

between the output of the filter y(k) = wT (k)x(k) and the

desired (or reference) signal d(k), which is given by

d(k) = wT
o x(k) + ν(k), (1)

where x(k) ∈ R
N is the input signal and the perturbation

signal ν(k) accounts for measurement noise and/or modeling

errors. In general, the error e(k) = d(k) − y(k) is employed

as the discrepancy measure between the adaptive filter output

and the reference signal. In practice, wo may be the acoustic

transfer function of a room, and should be identified in order

to achieve echo cancellation. Algorithms based on the MCC

can undertake non-Gaussian noise ν(k) in a robust approach,

whereas sparsity-aware algorithms are able to take advantage

of the concentration of energy of wo in few coefficients,

thereby speeding up the convergence rate of the adaptive filter.

The classic derivation of the least-mean-square (LMS) al-

gorithm is based on the stochastic gradient technique, which

is frequently used with the purpose of producing new adaptive

non-normalized sparsity-aware or MCC algorithms (e.g., [7],

[8]). In their turn, optimization techniques for solving deter-

ministic problems, although also suitable for obtaining non-

normalized schemes [9], are usually employed in the design

of normalized adaptive filters (e.g., [10]).

This paper provides a deterministic optimization framework,

whose solution leads naturally to MCC or sparsity-aware

algorithms, such as the MCC [8] and the ℓ0-LMS algorithm

[7], in both normalized and non-normalized versions. Gen-

eralized versions of these algorithms are also derived. New

algorithms that combine sparseness and MCC are proposed,

and an estimate of their steady-state MSE is developed.

Some geometric interpretations of the updating process of the

proposed algorithm are presented.

II. MCC ALGORITHMS

Under the MCC, the updating equation [8] is given by

w(k + 1) = w(k) + β exp

(

−
e2(k)

2σ2

)

e(k)x(k), (2)

where β is the step-size and σ is a positive parameter that

induces a trade-off between convergence rate and steady-state

MSE [11].

The normalized MCC (NMCC) updating equation can be

written as [11]:

w(k + 1) = w(k) + β
exp

(

− e2(k)
2σ2

)

e(k)x(k)

‖x(k)‖2
. (3)

Through the demonstration of Theorem 1 below, it is shown

how MCC and NMCC updates could be derived from the exact
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solution of a local (as opposed to a global) deterministic opti-

mization problem (see [9] for a discussion on such approach

for algorithms such as LMS or NLMS).

Theorem 1. The MCC updating equations (2) and (3) are

the solutions of the following problem:

min
1

2
‖w(k + 1)−w(k)‖2, (4)

s.t. ẽ(k) =

[

1− γ exp

(

−
e2(k)

2σ2

)]

e(k),

where ẽ(k) , d(k)−wT (k+1)x(k), ‖ ·‖2 denotes Euclidean

vector norm, γ = β‖x(k)‖2 for obtaining (2) and γ = β in

order to get (3).

Proof. The constrained problem (4) can be transformed into an

unconstrained one by using the Lagrange multiplier technique,

thereby yielding the cost function

FM [w(k + 1)] =
1

2
‖w(k + 1)−w(k)‖2

+λ

(

ẽ(k)−

[

1− γ exp

(

−
e2(k)

2σ2

)]

e(k)

)

, (5)

where λ is the Lagrange multiplier. The minimization of

FM [w(k + 1)] can be carried out by zeroing its gradient w.r.t.

w(k + 1), from which results

w(k + 1) = w(k) + λx(k). (6)

Applying (6) in the constraint (4) gives

λ = γ
exp

(

− e2(k)
2σ2

)

e(k)

‖x(k)‖2
. (7)

Using γ = β‖x(k)‖2 in (7) and inserting the result in (6)

leads to (2), whereas using γ = β yields (3).

Note that the exponential term in (4) eliminates large errors,

which turns the algorithm robust against impulsive-like noises.

III. SPARSITY-AWARE ADAPTIVE ALGORITHMS

The framework developed for the optimization problem

(4) can be readily applied to sparsity-aware adaptive filters.

Accordingly, let us consider the problem

min
1

2
‖w(k + 1)−w(k)‖2 + α‖w(k + 1)‖0, (8)

s.t. ẽ(k) = (1− γ) e(k),

where ‖ · ‖0 denotes the ℓ0 norm (or, in practice, ℓ0 pseudo-

norm) and α is a positive parameter that penalizes solutions

that present low sparsity.

The direct solution of (8) is not an adequate strategy, since

it leads to a computationally expensive NP-hard problem.

An alternative approach is the use of almost everywhere

differentiable approximation Fρ [w(k + 1)] of the ℓ0 norm1

1Frequently, the function Fρ[·] is dependent on a parameter ρ ∈ R+, which
can be arbitrated by the designer.

[7], [12], so that (8) can be approximately solved by the fol-

lowing unconstrained cost function, whose updating equation

is similar to the ℓ0-LMS (or ℓ0-NLMS) algorithms [7]:

FS [w(k + 1)] =
1

2
‖w(k + 1)−w(k)‖2 + αFρ [w(k + 1)]

+λ [ẽ(k)− (1− γ) e(k)] . (9)

Following the steps of the demonstration of Theorem 1, one

can derive the sparsity-aware adaptive update

w(k + 1) = w(k) +

,t1
︷ ︸︸ ︷

γ
e(k)x(k)

‖x(k)‖2
−αfρ [w(k)] (10)

+

,t2
︷ ︸︸ ︷

α
xT (k)fρ [w(k)]x(k)

‖x(k)‖2
,

where
∇Fρ[w(k+1)]
∇w(k+1) , fρ [w(k + 1)] and fρ [w(k + 1)] was

replaced by fρ [w(k)] to produce a valid recursion [12]. Note

that t1 and t2 have the same direction, and hence t2 can

be neglected. Indeed, in our simulations, the insertion of t2
makes virtually no difference in the transient and steady-state

performances of the ℓ0-LMS (or ℓ0-NLMS) algorithms.

Equation (10) establishes a family of sparsity-aware algo-

rithms. If, among the several feasible choices for Fρ [w(k)],
we select

Fρ [w(k)] ,

N−1∑

n=0

[1− exp (−ρ|wi(k)|)] , (11)

adopt γ = β‖x(k)‖2 and discard t2 we arrive, after some sim-

plifications, at the ℓ0-LMS. For the same choice of Fρ [w(k)],
adopting γ = β and discarding t2 produces the ℓ0-NLMS.

Note that the derivation of ℓ0-NLMS in [7] was accomplished

by the heuristic insertion of the denominator ‖x(k)‖2. In

the approach proposed here, on the other hand, ℓ0-NLMS is

obtained straightforwardly from the deterministic optimization

problem.

IV. MCC-BASED SPARSITY-AWARE ALGORITHMS

So far, we have considered algorithms that employ the MCC

or the sparsity of the impulse response to be identified. The ad-

vantages of both approaches can be exploited simultaneously

by using updates that take into account both properties. The

framework proposed in this paper is suitable for performing

this task. Applying steps similar to the ones of the previous

sections, we obtain from the cost function

FMS [w(k + 1)] =
1

2
‖w(k + 1)−w(k)‖2 + αFρ [w(k + 1)]

+λ

(

ẽ(k)−

[

1− γ exp

(

−
e2(k)

2σ2

)]

e(k)

)

(12)

the proposed MCC-based sparsity-aware update

w(k + 1) = w(k) +

,p
1

︷ ︸︸ ︷

γ
exp

(

− e2(k)
2σ2

)

e(k)x(k)

‖x(k)‖2
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,p
2

︷ ︸︸ ︷

−αfρ [w(k)] +

,p
3
=t2

︷ ︸︸ ︷

α
xT (k)fρ [w(k)]x(k)

‖x(k)‖2
. (13)

Discarding p3 and choosing γ = β‖x(k)‖2 yields a solution

that can be derived from a stochastic gradient technique whose

step-size is β, and applied on the following cost function:

FG [w (k)] = E

[

exp

(

−
e2(k)

2σ2

)]

+
α

β
Fρ [w(k)] . (14)

It should be observed that (13) represents a family of

MCC sparsity-aware adaptive algorithms, of which several

previously proposed algorithms are particular cases. If α 6= 0
and γ = β‖x(k)‖2, we have a new algorithm, which will

henceforth be called ℓ0-MCC. If α 6= 0 and γ = β, we have a

normalized version of the ℓ0-MCC algorithm, which we call

ℓ0-NMCC.

A. Geometric Interpretation

The deterministic optimization problem in (12) could pro-

vide a geometric interpretation of the updating equation (13)

[12]. In Fig. 1, which shows the 2-D case, we observe that p1

approximates w(k) to the hyperplane Π defined ẽ(k) = 0. The

directions of both p1 and p3 are orthogonal to the hyperplane.

The term p2 is a zero-attracting one, i.e., it forces near-zero

coefficients of w(k) in the direction of zero. Note that in

the case of large e(k), the exponential term exp
(

− e2(k)
2σ2

)

approximates the hyperplane Π to w(k + 1), which reduces

the update magnitude, providing robustness to the algorithm

against impulsive noise.

Π

ẽ(k) =
[

1− γ exp
(

−

e2(k)

2σ2

)]

e(k)

p1

p3p2

w(k)
wo

ẽ(
k)
=
0

w
(k
+
1)

Fig. 1. Geometric interpretation of the general proposed algorithm (13)
updating process.

V. ENERGY CONSERVATION RELATIONSHIP

In this section, we derive the energy conservation relation-

ship [13], [14] for the proposed family of algorithms (13).

Let

f [e(k)] , exp

(

−
e2(k)

2σ2

)

e(k) (15)

and w̃(k) , wo − w(k), so that the updating equation (13)

can be rewritten as:

w̃(k + 1) = w̃(k)− γ
f [e(k)]x(k)

‖x(k)‖2
+ αfρ [w(k)]

−α
xT (k)fρ [w(k)]x(k)

‖x(k)‖2
. (16)

By left-multiplying both sides of (16) by xT (k), we find

ep(k) = ea(k)− γf [e(k)] , (17)

where ep(k) , xT (k)w̃(k + 1) and ea(k) , xT (k)w̃(k).
Note that, although a common result, (17) does not hold true

for the ℓ0-LMS algorithm (whose updating equation does not

contain t2 of (13)).

From (16) and (17) we obtain

w̃(k + 1) +
ea(k)x(k)

‖x(k)‖2
+ α

xT (k)fρ [w(k)]

‖x(k)‖2

= w̃(k) +
ep(k)x(k)

‖x(k)‖2
+ αfρ [w(k)] , (18)

The evaluation of the energy on both sides of (18) allows us

to write the following exact energy relation:

‖w̃(k + 1)‖2 +
e2a(k)

‖x(k)‖
+ 2α

ea(k)x
T (k)fρ [w(k)]

‖x(k)‖2

+α2

[
xT (k)fρ [w(k)]

]2

‖x(k)‖2
= ‖w̃(k)‖2 +

e2p(k)

‖x(k)‖2
(19)

+2αw̃T (k)fρ [w(k)] + α2‖fρ [w(k)] ‖2,

which is a general result that can be used for obtaining steady-

state MSE estimates of several algorithms. In the next section,

we focus on the NMCC2.

VI. NMCC STEADY-STATE MSE

In order to demonstrate the powerfulness of the general

energy conservation (19), we consider the NMCC algorithm,

which corresponds to the choices α = 0 and γ = β. Here, our

objective is to derive the steady-state MSE of this algorithm.

The following assumptions, which are frequently employed in

the literature [13], [15], [16], are in order:

A1: the adaptive filter converges.

A2: the noise ν(k), whose variance is σ2
ν , is i.i.d., zero-mean,

Gaussian and independent of x(k).
A3: in steady-state, ‖x(k)‖2 is independent of ea(k) and e(k).
Henceforth, we assume steady-state regime. Using A1, we can

state that

lim
k→∞

E
[
‖w̃(k + 1)‖2

]
= E

[
‖w̃(k)‖2

]
. (20)

Applying the expectation operator in (19) and using (20) with

assumptions A2-A3, we obtain

E

[
e2a(k)

‖x(k)‖2

]

= E

[

e2p(k)

‖x(k)‖2

]

. (21)

From (17) and assumptions A2-A3, (21) can be rewritten as

2E
[
ea(k)f [e(k)]

]
= βE

[

f
2
[e(k)]

]

. (22)

Using A2, we obtain [17]

E
[
ea(k)f [e(k)]

]
=

σ3Ψ

(σ2 + σ2
ν +Ψ)

3

2

, (23)

2The analysis of algorithms that employ ℓ0 penalizations is out of the scope
of this paper.
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E

[

f
2
[e(k)]

]

=
σ3

(
Ψ+ σ2

ν

)

(2Ψ + 2σ2
ν + σ2)

3

2

, (24)

where Ψ , limk→∞ E
[
e2a(k)

]
is the excess MSE (EMSE) of

the algorithm [13]. From (22), (23) and (24), we can estimate
Ψ by solving the fixed-point equation

Ψ = β

(

Ψ+ σ2
ν

) (

σ2 + σ2
ν +Ψ

)3/2

2 (2Ψ + 2σ2
ν + σ2)3/2

. (25)

Whereas in theory (25) could have more than one solution,

our simulations showed only the desired one.

Equation (25) can be expressed as

Ψ =
β
(
Ψ+ σ2

ν

)

2

,Φ
︷ ︸︸ ︷
(

σ2 + σ2
ν +Ψ

2Ψ + 2σ2
ν + σ2

) 3

2

, (26)

from which the EMSE of the NMCC algorithm becomes

Ψ =
βσ2

νΦ

2− βΦ
. (27)

Since Φ < 1, we conclude that the EMSE of the NMCC

algorithm is always lower than the EMSE of the NLMS

algorithm, which is given by [13]:

ΨNLMS =
βσ2

ν

2− β
. (28)

In the limit σ → ∞ the EMSE of both algorithms (NMCC

and NLMS) coincide3.

VII. SIMULATIONS

A. Performance Evaluation

1) Artificial Signals: In this experiment, we evaluate the

mean-square deviation (MSD), given by

MSD(k) , ‖w(k)−wo‖
2, (29)

of the non-normalized and normalized versions of the LMS,

MCC, ℓ0-LMS and ℓ0-MCC algorithms. Similarly to [7], the

unknown system comprises 128 coefficients, of which eight

(whose locations are randomly selected) are sampled from a

zero-mean and unitary-variance Gaussian variable. The input

signal is a zero-mean white Gaussian noise with variance

σ2
x = 4. The noise ν(k) is sampled from a zero-mean uniform

distribution with variance σ2
ν = 4

3 , to simulate a non-Gaussian

noise with large perturbations (a challenging scenario). For

a fair comparison, equal parameter values were used in all

algorithms. In ℓ0-based algorithms, Fρ [w(k)] is given by (11)

with ρ = 5 and α = 3 × 10−5, whereas in MCC-based

algorithms σ = 2. We employed β = 1.5×10−3 and β = 0.6,

respectively, for non-normalized (Fig. 2) and normalized (Fig.

3) algorithms. As indicated in Figs. 2 and 3, the proposed ℓ0-

MCC and ℓ0-NMCC produced the lowest steady-state MSD

among all tested algorithms, with a faster convergence rate

than those of their MCC and NMCC counterparts. It can be

noted, however, that ℓ0-LMS and ℓ0-NLMS converge faster

3See [17] for similar conclusions related to the MCC and LMS algorithms.

than the proposed algorithms, so that their employment poses

a classical trade-off between convergence rate and steady-state

performance.

2000 4000 6000 8000 1000012000140001600018000

−10

−5

0

5

LMS

MCC

ℓ0-LMS
ℓ0-MCC

Iteration number

M
S

D
(d

B
)

Fig. 2. MSD (in dB) of non-normalized algorithms (γ = β‖x(k)‖2), with
1000 Monte Carlo averages.

2000 4000 6000 8000 1000012000140001600018000

−10

−5

0

5 NLMS
NMCC

ℓ0-NLMS

ℓ0-NMCC

Iteration number

M
S

D
(d

B
)

Fig. 3. MSD (in dB) of normalized algorithms (γ = β), with 1000 Monte
Carlo averages.

2) Speech Input: Frequently (e.g., in echo cancellation

applications) the adaptive filter is driven by speech signal. In

this simulation, the identification performances of normalized

algorithms (i.e., NLMS, NMCC, ℓ0-NLMS and ℓ0-NMCC)

are compared. The input signal is a speech signal (extracted

from the file 03a01Wa.wav of the Berlin Database

of Emotional Speech4). The employed transfer function

is the first model of [18] (with zero-padding up to a 512

length). The noise n(k) is sampled according to a Gaussian

mixture model, whose probability density function (pdf) is:

fν(ν) = piN (0, σ2
1) + (1− pi)N (0, σ2

2), (30)

where N (µ, σ2) is the Gaussian pdf whose mean is µ and

variance is σ2, pi = 0.98, σ2
1 = 10−6 and σ2

2 = 1. In order that

the algorithms behave properly, a regularization constant δ =
0.1 was added to the denominator ‖x(k)‖2 of the normalized

4http://www.expressive-speech.net
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step-sizes. In ℓ0-based algorithms, Fρ [w(k)] is given by (11)

with ρ = 1000 and α = 5 × 10−9, whereas in MCC-based

algorithms σ = 0.01. In all algorithms, the choice β = 0.1 is

used. The results are presented in Fig. 4. One can note that

only correntropy-based adaptive algorithms converge, and the

proposed ℓ0-NMCC performs better than the NMCC.

0.5 1 1.5 2 2.5

x 10
4

−18

−16

−14

−12

−10

−8 NLMS

NMCC

ℓ0-NLMS

ℓ0-NMCC

Iteration number

M
S

D
(d

B
)

Fig. 4. MSD (in dB) of normalized algorithms (γ = β), with speech signal
at the input of the adaptive filter.

B. Steady-State MSE

In this section, we verify the accuracy of (25) in estimating

the steady-state MSE of the NMCC algorithm. The impulse

response to be identified is the 8th model of [18]. A white

Gaussian noise having variance σ2
ν = 10−3 was added to

the reference signal. The input signal is a unitary-variance

white Gaussian noise. The NMCC algorithm employed σ = 2.

The experimental MSE was obtained by averaging 50000

consecutive steady-state quadratic errors. Figure 5 shows that

the experimental and theoretical results are in close agreement

for a large range of values of β.

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

−29.5

−29

−28.5

−28

−27.5

−27

β

M
S

E
(d

B
)

Fig. 5. Theoretical (red) and experimental (blue) steady-state MSE (in dB)
of the NMCC algorithm.

VIII. CONCLUSIONS

A deterministic framework derivation for sparsity-aware and

MCC-based algorithms was provided. Pre-existing algorithms

were obtained in a novel way and new ones were proposed.

A geometric interpretation of their updating process was

provided, as well as a steady-state MSE expression for the

NMCC algorithm, derived from a general energy conservation

relationship. Computer simulations showed that the algorithms

advanced in this paper present lower steady-state MSD than

previously proposed algorithms when modeling sparse impulse

responses in non-Gaussian high-noise environments.
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