
ROBUST RECONSTRUCTION FOR CS-BASED FETAL BEATS DETECTION

Giulia Da Poian, Riccardo Bernardini and Roberto Rinaldo

DPIA, University of Udine, Udine, Italy

ABSTRACT
Due to its possible low-power implementation, Compressed
Sensing (CS) is an attractive tool for physiological signal
acquisition in emerging scenarios like Wireless Body Sensor
Networks (WBSN) and telemonitoring applications. In this
work we consider the continuous monitoring and analysis
of the fetal ECG signal (fECG). We propose a modifica-
tion of the low-complexity CS reconstruction SL0 algorithm,
improving its robustness in the presence of noisy original
signals and possibly ill-conditioned sensing/reconstruction
procedures. We show that, while maintaining the same com-
putational cost of the original algorithm, the proposed modifi-
cation significantly improves the reconstruction quality, both
for synthetic and real-world ECG signals. We also show that
the proposed algorithm allows robust heart beat classification
when sparse matrices, implementable with very low compu-
tational complexity, are used for compressed sensing of the
ECG signal.

Index Terms— Non-invasive Fetal ECG, Compressive
sensing, Sparse representations.

1. INTRODUCTION

The Compressive Sensing paradigm asserts that one can
successfully recover certain signals, sampled far below the
Nyquist frequency, given that they are sparse in some dictio-
nary [1] [2]. CS takes advantage of sparsity to reconstruct the
compressed signal at the decoder/receiver side. In particular,
an N−dimensional vector of signal samples is represented as
a sparse linear combination of K dictionary vector atoms,
with K � N . By taking a small number M > K of linear
projections of the signal along random vectors, arranged in
the so called sensing matrix, it is possible to reconstruct the
signal exactly under certain circumstances [1], by minimizing
the l0 norm of the representation, which corresponds to the
number of its non zero elements. Due to the promising low
power implementation of CS based compression schemes,
the technique is particularly suitable for physiological signal
telemonitoring via a wireless body-area network (WBAN),
using low complexity battery operated devices. In particu-
lar, non-invasive continuous fetal electrocardiogram (fECG),
recorded in a non invasive way from the maternal abdomen,
can provide early detection of fetal arrhythmias, making it
possible to perform a timely medical treatment. Moreover,

the sparse signal structure exploited by CS for compression
and transmission may also be used for heart beat detection
and classification. Raw abdominal fECG signals are usu-
ally contaminated by many sources of noise and result to be
non-sparse, even when represented with Wavelets or DCT
bases, which are commonly used for the sparsification of
adult ECG. However, it has been experimentally demon-
strated that specifically designed dictionaries can provide a
sparser representation [3], [4].

Starting from the CS measurements, common reconstruc-
tion algorithms [5], [6] relax the original NP-hard problem
using approximations of the l0 norm of the sparse vector. The
Smoothed-L0 algorithm presented in [6] (SL0) is particularly
interesting for its low complexity, which allows for real-time
signal reconstruction [7]. However, as we will see, these ap-
proaches may fail in case of noisy signals or ill-conditioned
sensing/dictionary-based reconstruction procedures.

In this work we describe a variant of the SL0 technique for
this more challenging setting. We show that, while maintain-
ing the same computational cost of the original algorithm, the
proposed modification significantly improves the reconstruc-
tion quality, both for synthetic and real-world ECG signals.
We also show that the proposed algorithm allows robust heart
beat classification when sparse matrices, implementable with
very low computational complexity, are used for compressed
sensing of the ECG signal.

2. REGULARIZATION OF SMOOTHED L0
ALGORITHM

Compressive Sensing aims to reconstruct a signal x ∈ RN ,
sparse in some domain, by solving the following optimization
problem

min
s
||s||0 s.t. ‖ y −As ‖2≤ ε, A = ΦD, (1)

where Φ ∈ RM×N is the sensing matrix, x = Ds is the
signal to be reconstructed and y = Φx is the vector of mea-
surements. In (1), D ∈ RN×D is the sparsifying dictionary
and s ∈ RD is the sparse representation of x, ideally with
a small number K of non-zero elements. The power con-
sumption of CS based compression is strongly affected by the
sensing matrix. While strong theoretical results suggest the
use of a matrix with entries drawn as independent Gaussian
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random variables [2], sparse binary matrices, where Φ has
only d non-zero randomly selected entries in each column,
have been proposed to reduce the computational cost [8]. In
this case, calculating Φx takes only O(dN) operations, with
a significant saving when d� N .

The SL0 algorithm proposed in [6] solves the problem in
Eq. (1) by approximating the l0-norm with a continuous func-
tion, and optimizing the resulting cost function to provide a
smooth measure of sparsity. Indeed, the l0-norm can be ap-
proximated using Gaussian functions, for small σ values [6],
as in

||s||S,0 , D −
D∑
i=1

exp(−s2i /2σ2). (2)

Thus, the minimization of the l0-norm is approximately
equivalent to maximize Fσ(s) =

∑
i exp(−s2i /2σ2). This

enables to replace the l0-norm minimization with a convex
problem, and maximize Fσ(s) using a steepest ascent algo-
rithm. The parameter σ controls the trade-off between the
smoothness of the objective function and the accuracy of the
approximation of the l0-norm.

The algorithm proposed in [6] consists of two nested it-
erations, and the external loop is responsible to gradually de-
crease the σ value. Note that, when σ is sufficiently large,
exp(−s2i /2σ2) ≈ 1−s2i /2σ2, and the maximization of Fσ(s)
s.t. y = As resembles the minimum l2-norm solution of
Fσ(s) s.t. y = As [6]. Therefore, the starting solution of the
optimization process is usually calculated using the pseudo-
inverse A† of A and set to s0 = AT (AAT )−1y.

The internal loop tries to maximize Fσ(s) on the feasi-
ble set {s|y = As}, using a steepest ascent algorithm, and
updating s← s− µδk where

δk = s ·

[
e
− s21

2σ2
k , . . . , e

− s2D
2σ2
k

]T
. (3)

The next step consists in projecting s into the convex set
to avoid trapping the algorithm in local maxima

s = s−AT (AAT )−1(As− y). (4)

The SL0 is typically 2 to 3 times faster than the Basis Pur-
suit denoising algorithm (SPGL1 implementation, [5]), while
resulting in many cases in the same or better accuracy [6].
Note that the algorithm requires that matrix A has full rank
M . When the number of measurements M increases (i.e., the
compression ratio decreases), this requirement may become
critical, making the reconstruction problem ill-conditioned
and sensitive to noise. To avoid these problems, in the next
section we propose a regularized version of the reconstruction
algorithm.

2.1. Regularization

In real scenarios where the sparse signal or the measure-
ments are affected by noise, if the compound matrix A is

ill-conditioned, then application of A† amplifies the error
and results in poor reconstruction, even using the Robust
SL0 proposed in [9]. Introducing a regularization term in the
optimization problem enables a stable recovery of x = Ds.

As in the SL0 algorithm, we approximate the l0-norm by
using (2), and the algorithm again consists in two nested it-
erations. The internal loop seeks the maximum of Fσ in the
feasible set {s| ‖ y −As ‖2≤ ε}. At each step we compute
s̃ = s− µδk and project s̃ by solving

min
ŝ
‖ ŝ− s̃ ‖2 s.t. ‖ Aŝ− y ‖2≤ ε. (5)

Using the Lagrangian function of Eq. (5), the problem can be
rewritten as

min
ŝ
‖ Aŝ− y ‖22 +λ ‖ ŝ− s̃ ‖22, (6)

where λ is the regularization parameter. The solution is

ŝ = s̃−AT (AAT + λIM )−1(As̃− y). (7)

As for the SL0 algorithm, for large σ values, the solution
is equal to the l2 norm solution subject to ‖ y −As ‖2≤ ε.
Solving the problem

min
s
‖ As− y ‖22 +λ ‖ s ‖22, (8)

we set the initial solution of the algorithm to s0 = AT(AAT+
λIM )−1y.

The proposed λSL0 algorithm is summarized in Algo-
rithm 1. The value of the regularization parameter λ repre-
sents a compromise between the two terms of the cost func-
tion. When the noise norm ε is small, λ → 0, and the algo-
rithm reduces to the original SL0 for the noiseless case. We
carried out some experiments (results are omitted due to lack
of space) and we observed that the value of λ is not critical
and should be ∼10−100 times the expected noise ε.

Algorithm 1 λSL0
Input: µ step size, y, A, σdec, σmin, λ, Kiter

Initialization: s0 ← AT((AAT) + λIM )−1y,
σ1 = 2|max(s0)|
while σk < σmin do

for k=1:Kiter do

δk ← s · [e
− s21

2σ2
k , . . . , e

− s2D
2σ2
k ]T

s← s− µδk
Project s onto the feasible set: {s| ‖ As− y ‖2≤ ε}
s← s−AT((AAT) + λIM )−1(As− y)

end for
σk ← σkσdec
s̃k ← s

end while
Output: sOUT ← s̃k
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3. PERFORMANCE OF λSL0

In this section, the effect of noise on the reconstruction per-
formance is experimentally analyzed. We compare the per-
formance of the proposed algorithm with the original SL0
and the BPDN-SPGL1 algorithms. The signals used in these
experiments are simulated fECG signals [10] with length
N = 256. As sparsifying dictionaries we use a dictionary
of Gaussian like functions [7], and the Wavelet basis with
Daubechies’ length-4 filters. The sensing matrix elements
are drawn as independent Gaussian random variables [2]. We
repeat the experiment 100 times with different source signals
at different noise levels, and using each time a different ran-
dom sensing matrix. The reported SNR value is the average
of these simulations. In Fig. 1, we report the reconstruction
SNR as a function of the input SNR (SNRin) when gaussian
noise is added to the simulated fECG traces, for a compres-
sion ratio CR=50% (M = 128). Compared to the original
SL0 algorithm, λSL0 allows to achieve better reconstruc-
tion quality, especially when the Gaussian Dictionary [7] is
used. An improvement can be also appreciated when the
Wavelet basis is used, especially at lower SNRin values. Note
that the use of the Gaussian Dictionary gives much better
performance than Wavelets also when BPDN is used.

In addition to the previous experiments, we assess the re-
construction performance as the compression ratio changes.
In Fig. 2, it is possible to see that the average SNR achieved
by the λSL0 algorithm combined with the Gaussian Dictio-
nary outperforms the SL0 method, especially at low com-
pression ratios (M large) and is comparable with respect to
the traditional BPDN algorithm, which has a higher complex-
ity. At higher compression ratios (CR> 50%) the Wavelet
basis achieves a lower performance independently of the re-
construction algorithm.

As a measure of the computational cost of the algorithms
we use the CPU time, setting the same parameters (Kiter = 3
an σdec = 0.5 ) for SL0 and λSL0. Experiments show an
average reconstruction time for the λSL0 algorithm ranging
from 0.07 s, when CR=30%, to 0.01 s, when CR=80%. Thus,
it maintains approximately the same computational cost of the
original SL0 algorithm (ranging from 0.03 s to 0.01 s), while
being much faster than the BPDN algorithm (1.6 s to 0.6 s).
Programs are written in Matlab, running on an Intel Core i7
processor, equipped with 16 GB memory.

4. APPLICATION TO JOINT COMPRESSION AND
BEATS DETECTION IN FECG

In this section, we analyze the performance of λSL0 for fe-
tal beat detection in CS-compressed real-world fECG signals.
We also analyze the influence of different sensing matrices,
in particular sparse matrices which allow very low complex-
ity of the CS sensor.
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Fig. 1. Reconstruction SNR versus input SNR obtained from
100 trials for simulated fECG signals, at CR=50%, using the
SL0, λSL0 and BPBN (SPGL1) algorithms using the Wavelet
and the Gaussian Dictionary.
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Fig. 2. Reconstruction SNR versus CR obtained from 100 tri-
als for simulated fECG signals.

4.1. fECG Reconstruction and Fetal Beats Detection

In [7] a framework for the compression of multichannel ab-
dominal fECG and joint detection of fetal beats has been pro-
posed. The compression of the signal is based on Compres-
sive Sensing and uses a binary sparse sensing matrix, con-
taining only d = 2 ones in random positions in each column,
in order to reduce the sensor complexity [8]. Before recon-
struction using SL0, Independent Component Analysis (ICA)
is applied on the compressed measurements, and then the re-
construction process recovers the uncompressed independent
components (ICs). The sparse decomposition used to recon-
struct the ICs is also used to further separate the maternal and
fetal signals and to detect the time location of the beats. In
particular, we use a dictionary of Gaussian like functions [4],
composed by two sub-dictionaries for the approximation of
the maternal ECG component and the fetal one. The separa-
tion is based on the atoms, belonging to the fetal or mother’s
sub-dictionaries, activated during the reconstruction process.
In accordance with the analysis of the previous section,we
found out experimentally that, for compression ratios greater
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than 50%, the detection performance is preserved, while at
lower compression ratios, besides the increased information
available, fetal beat detection may fail.

Fig. 3. Sparse decomposition of the independent component
in (a) using the SL0 algorithm, for (b) CR=75% and (c)
CR=40% and (d) using the λSL0 algorithm for CR=40%. In
the graphs, different intensities represent the weight of the ac-
tivated atoms.
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Fig. 4. (a) Detection performance for SL0 and λSL0 algo-
rithm. The vertical coordinate gives the average Sensitivity
for dataset A at different CR values. (b) Comparison of aver-
age PRD when using the two algorithms at different CRs.

As an example, we show in Fig. 3 (a) a portion of the IC of
signal a32 of the 4-channel Physionet Challenge dataset [11],
where the fetal beat is clearly visible. When the compression
ratio is CR=75%, the reconstruction quality value PRD (per-
centage root-mean-square difference) is about 6% (average
of the 4 channels) and the detection performance in terms of
sensitivity (S) and positive predictivity (P+) are S=100% and
P+=99.34%, respectively. At lower compression ratios de-
tection fails, and for CR=40% we have PRD=0.47%, S=60%
and P+=68%. Fig. 3 (b) and (c) show the positions of the fe-
tal activated dictionary atoms for the two cases CR=75% and
CR=40%, respectively. As we can see, when CR=40%, the
algorithm fails to find the correct sparse representation, lead-
ing to a wrong beat detection. Instead, Fig. 3 (d) shows the
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Fig. 5. Average recovery quality for signal a25 of dataset A.
The vertical coordinate gives the average PRD and the error
bar gives the standard deviation. (a) Effects of the number
of non-zero entries in each column of the sensing matrix at
CR=40% for SL0 and λSL0. (b) Comparison of average PRD
using sparse sensing matrices with d = 2 and random Gaus-
sian sensing matrices at different CR (λSL0 algorithm).

activated atoms when the λSL0 algorithm is used instead of
SL0. For the whole signal and using the same sensing matrix
at CR=40%, λSL0 achieves S=100% and P+=99%. We repeat
the experiment 20 times with different random sparse binary
matrix (d = 2), for all the signals in dataset A (excluding
badly annotated signal as in [12]). The reported sensitivity
value is the average of these simulations. Fig. 4 (a) shows
that the detection performance of the proposed algorithm is
almost independent of the CR, while the SL0 algorithm fails
at lower CRs.
In Fig. 4 (b) it can be seen that the proposed λSL0 algorithm
outperforms the original algorithm, in terms of average recon-
struction quality PRD, at low compression ratios.

4.2. Influence of the sensing matrix

In this section, we analyze the performance of the reconstruc-
tion procedure, using SL0 and λSL0 algorithms, when differ-
ent sensing matrices, generated from i.i.d. Gaussian random
variables or sparse with different d values, are used. There are
not theoretical guidelines for choosing the optimal number of
non-zero elements d, therefore it has been determined exper-
imentally. In the following experiments, the signal is divided
into N = 250 sample long segments, which are compressed
independently. For each d value and compression ratio, the
experiments were repeated using 20 randomly generated dif-
ferent sensing matrices, and the average performance is re-
ported. Results for signal a25 of the Challenge dataset A are
shown in Fig. 5 and Fig. 6. As we can see from Fig. 5(a), for a
compression ratio CR=40%, increasing the number of ones in
each column of the sensing matrix, does not improve the re-
construction quality, both for the SL0 and λSL0 reconstruc-
tion algorithms. Note however that λSL0 outperforms SL0.
Fig. 5(b) shows a comparison of the reconstruction quality ob-
tained with sparse matrices, d = 2, with respect to the quality
obtained using Gaussian random matrices. Although the theo-

2016 24th European Signal Processing Conference (EUSIPCO)

1306



Table 1. Average performance of detection and reconstruction
for SL0 and λSL0 for dataset A.

SL0 λSL0
CR S PRD S PRD
% [%] [%] [%] [%]

40 Sparse 2 46 5.27 85 3.77
Gaussian 45 5.58 84 3.72

50 Sparse 2 77 5.93 85 4.49
Gaussian 75 5.71 85 4.27

75 Sparse 2 84 8.81 84 8.14
Gaussian 84 8.80 84 8.02

retical reconstruction performance for i.i.d. Gaussian sensing
matrices is well established, we can see experimentally that,
for the class of signals we are considering, sparse matrices
have similar performance. The use of a sparse sensing matrix
with d = 2 allows to achieve almost identical reconstruc-
tion results, besides the very low complexity implementation.
Finally, Table 1 summarizes the average reconstruction and
detection performance for dataset A, at different compression
ratios, when using a sparse sensing matrix with d = 2 and an
i.i.d. Gaussian sensing matrix. Experiments are repeated for
the SL0 and λSL0 algorithms. Both detection and reconstruc-
tion are mostly independent from the sensing matrix, while it
is apparent that the λSL0 algorithm allows robust detection
and reconstruction.
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Fig. 6. (a) Effects of the number of non-zero entries in each
column of the sensing matrix on detection performance. The
vertical coordinate gives the average Sensitivity S for signal
a25 of dataset A for CR=40%, the error bar gives the standard
deviation. (b) Comparison of average Sensitivity when using
sparse sensing matrices with d = 2 and random Gaussian
sensing matrices at different CR (λSL0 algorithm).

5. CONCLUSIONS

In this paper we proposed a regularized version of the SL0
algorithm. Experimental results confirm that the proposed
algorithm has good performance, while preserving the low
computation complexity of the original one. The application
of λSL0 to the joint compression and detection framework of
fetal ECG also demonstrates that the proposed modification

can efficiently reconstruct the signals and correctly detect the
beats in the presence of noise and for different compression
ratios. Moreover, we have shown that the use of sparse sens-
ing matrices with only 2 non-zero elements in each column,
compares successfully with random Gaussian matrices, while
permitting a very low complexity implementation.
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