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Abstract—This paper investigates the problem of distributed angle-of-
arrival (AOA) target tracking in 3D space using unmanned aerial vehicles
(UAVs). Because of communication constraints arising from distance and
bandwidth constraints in a distributed UAV system, some UAVs may not
be able to share their information with all other UAVs. This will lead
to reduced tracking performance. In order to improve the estimation
performance, a 3D distributed pseudolinear Kalman filter (DPLKF)
using delayed information through intermediate UAVs is proposed. To
track a moving target, a new estimation method using 1-step delayed
information is developed which has low computational complexity. The
communication topology with delayed information sharing is analyzed.
In order to reduce communication traffic, a direct neighbors selection
strategy is proposed. The effectiveness of the proposed estimation strategy
is demonstrated with simulation examples.

I. INTRODUCTION

Unmanned aerial vehicles (UAVs) have been widely used for
angle-of-arrival (AOA) target localization [1, 2]. In 3D AOA target
localization, the target state is estimated by azimuth and elevation
angle measurements collected by multiple UAVs [2, 3]. To solve
the AOA target localization problem, many different estimation
methods have been proposed. A pseudolinear estimator (PLE) which
is a linear least squares estimator with a closed-form solution, was
introduced to locate a target in [4]. The authors of [5] presented a
maximum likelihood estimator (MLE) for AOA target localization.
The extended Kalman filter (EKF) was applied to the nonlinear AOA
target localization problem in [6]. In [7], the authors proposed a
3D PLE employing a bias compensation method developed in [8].
Another 3D AOA PLE was developed in [9] including an xy-PLE
and a z-PLE. In [7], the bias compensation algorithm has been
simplified which is similar to a 2D bias compensation. Recently, a
closed-form solution for 3D AOA localization capable of handling
sensor position errors was proposed [10]. However, being a batch
estimate, the computational complexity of these estimators increase
significantly as more measurements are acquired. In [11], a recursive
3D pseudolinear Kalman filter (PLKF) was developed with a better
stability than an EKF method.

Using multiple UAVs has advantages in terms of estimation
accuracy and system reliability, and becomes a good choice for
AOA target localization. The key advantages of the distributed
estimation strategy compared with the centralized estimation are:
(1) low-energy communication cost, (2) parallel processing, and (3)
independent UAVs which are robust to link failure problem [12–
14]. In [12] and [15], two different kinds of diffusion Kalman
filters for distributed sensor network were proposed with different
diffusion update strategies. [16] introduced a distributed EKF method
to locate a single target. To reduce computational complexity and
communication traffic [17] proposed a method to reduce unnecessary
cooperation in distributed sensor network. In the partial diffusion
method in [18] and [19], each node transmits a part of the entries

of its estimate vector to its neighbors at each iteration. The trade-
off between communication cost and estimation performance was
analyzed in [18]. However, in a distributed UAV target localization
system, as the information acquired by each UAV is limited, the
estimation accuracy will decrease. In this paper we aim to use all the
available information including the delayed information transmitted
by intermediate UAVs to improve estimation performance. This leads
to a novel 3D distributed PLKF (DPLKF) using delayed information
to track a moving target.

In this paper, we focus on distributed estimation using delayed
information from intermediate UAVs to track a moving target in 3D
space. The process of delayed information transmission is presented
and the estimation strategies using 1-step delayed information are
developed. To reduce network communication, a direct neighbor
selection method is developed whereby each UAV communicates
with a subset of their neighbors. The rest of the paper is organized
as follows. Section II presents the problem formulation. The detailed
delayed information transmission process is introduced in Section III.
Section IV presents an estimation algorithm using delayed informa-
tion and the path optimization introduced in [11]. Communication
topology of the distributed UAV tracking system is analyzed in
Section V. The direct neighbors selection strategy is introduced in VI.
Simulation results are presented in Section VII. The paper concludes
in Section VIII.

II. PROBLEM FORMULATION

Consider multiple distributed UAVs equipped with AOA sensors
tracking a single target in 3D space. Every mobile UAV can get
their own estimate from different noisy azimuth and elevation mea-
surements taken at discrete-time instants k = 1, 2, 3, .... The target
tracking geometry and the ideal 3D angle measurements are depicted
in Fig. 1. The ideal angle measurements of the ith UAV are

θi,k = tan−1 pyk − ri,yk
pxk − ri,xk

, −π < θi,k ≤ π (1a)

φi,k = tan−1 pzk − ri,zk
‖[pxk, pyk]− [ri,xk, ri,yk]‖

, −π
2
< φi,k ≤

π

2
(1b)

where pk = [pxk, pyk, pzk], ri,k = [ri,xk, ri,yk, ri,zk] are locations
of the target and the ith UAV at time k, respectively. || · || denotes the
Euclidean norm and tan−1 is the 4-quadrant arctangent. The veloci-
ties of the target and the ith UAV are represented by [ṗxk, ṗyk, ṗzk]
and [ṙi,xk, ṙi,yk, ṙi,zk]. The noisy azimuth and elevation measure-
ments can be written as

θ̃i,k = θi,k + ni,k, −π < θ̃i,k ≤ π (2a)

φ̃i,k = φi,k +mi,k, −π
2
< φ̃i,k ≤

π

2
(2b)
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where ni,k and mi,k are independent additive zero-mean Gaussian
white noise with variance σ2

θ,i and σ2
φ,i, respectively. The position

and velocity of the target are unknown. Assume the UAVs’ positions
and velocities are known with negligible error. From the measurement
models, a nonlinear relationship exists between angle measurements
and target state. Our objective is to estimate the target state using the
noisy angle measurements from different UAVs.

Target trajectory 

y

z

  
θ i, k

x

pk

UAV 
trajectory 

φi, kri, k

r2, k

r1, k … 

Fig. 1. Multiple UAV AOA tracking geometry and 3D angle measure-
ments.

III. DELAYED INFORMATION TRANSMISSION

The UAVs share their information such as measurements, locations,
local estimates and related weight factors with neighboring UAVs
(neighbors) using on-board communication equipment. The UAVs
that can communicate with each other directly are called direct
neighbors. Assume each UAV has sufficiently large memory to save
the data collected at different sampling time instants. Furthermore,
every UAV can relay the outdated information from other neighbors
acquired at previous time instants. As a result, two indirect neighbors
can share outdated information through an intermediate UAV.

First, we present two assumptions to make the delayed information
transmission problem analyzable.
Assumptions:
1. The communication process happens after all UAVs get their
measurements at time k and all the UAVs communicate at same time.
2. The intermediate UAVs cannot transmit the information they
receive at time k until the next time instant k+1.
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I1,k
I3,k−1

I2,k I3,k
I2,k I1,k−1

(a)

UAV1 
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I3,k , I4,k−1
I2,k I1,k−1

UAV4 
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I3,k
I2,k−1

I4,k−2
I1,k−2

(b)

Fig. 2. Information transmission schematic at time k: (a) one intermediate
UAV, (b) multiple intermediate UAVs.

In the distributed UAV target tracking system, neighboring UAVs
can not only share measurements and locations of time k but also the
information including the diffusion updated estimate with a weight
coefficient of time k− 1. We call the saved information at last sam-
pling time k−1 as 1-step delayed information. Similarly, the outdated
information of time k−M is called M-step delayed information. Each
UAV can be an intermediate node to pass the outdated information.
As shown in Fig. 2(a), UAV 2 can communicate with both UAV 1

and UAV 3, but UAV 1 and UAV 3 cannot communicate with each
other directly. UAV 2 becomes an intermediate UAV which can relay
the delayed information from UAV 1 or 3 to UAV 3 or 1 at time k.
In Fig. 2(a), I1,k means the UAV 1’s information at time k and the
arrow denotes the information transmission direction.

Note that when two UAVs are connected by multiple intermediate
UAVs the delayed information needs multiple communication times
to transmit one by one through all the intermediate UAVs. Thus, in
the delayed information sharing network, we have a constraint that
restricts the available delayed information of the ith UAV at time k.
Constraint: If two UAVs are connected through M intermediate
UAVs, at time k they can only get the k−M -step delayed information
from each other.
Fig.2(b) depicts the constraint with an example of M = 2. In order
to eliminate the repeated delayed information, a rule is proposed.
Rule: If the delayed information has already been used before or
received from another intermediate UAV, it will be ignored. Thus,
data incest problem should be avoided.
To realize the rule, two detailed logical judgements are developed:
1. If two UAVs can communicate directly at last sampling time (such
as UAV 1 and UAV 2 in Fig.2(b)), their delayed information will be
ignored.
2. If the delayed information from an indirect neighbor l (such
as UAV 1 and UAV 3 in Fig.2(b)) is first time transmitted by
an intermediate UAV, this intermediate UAV will be recorded. The
delayed information of UAV l transmitted by other intermediate UAVs
will be ignored.

IV. MOVING TARGET TRACKING ALGORITHM WITH 1-STEP

DELAYED INFORMATION

The main estimator used in this paper is a DPLKF, drawing
on [11]. The target state vector in xy-plane is defined as ak =
[pxk, ṗxk, pyk, ṗyk]

T where T denotes matrix transpose. The target
dynamic model is

ak+1 = Ukak + uk (3)

where
Uk =

[
Ak 02×2

02×2 Ak

]
,Ak =

[
1 T
0 1

]
,

uk is the process noise including model uncertainty and T denotes
the constant time interval between discrete-time instants. The process
noise exists if the target moves with acceleration or irregular changing
velocities. In a classical distributed estimator, l denotes the neighbor-
ing UAVs (including the ith UAV itself) that can communicate with
the ith UAV. It also includes the neighborhood of neighboring UAVs
whose delayed information is transmitted to the ith UAV.

The algorithm becomes very complex if multiple-step delayed
information is used which is similar to tracking with out-of-sequence
measurements [20]. Therefore, in this paper we only use the 1-
step delayed information in the moving target tracking algorithm.
Thus, the UAVs connected through more than one intermediate UAVs
cannot share delayed information. The proposed algorithm comprises
two steps: estimate update with delayed information and estimation
with real-time information (the information sampled at time k). The
diagram of the distributed target tracking system is shown in Fig. 3.
The xy-DPLKF has two steps. First, estimate update with delayed
information θ̃l,k−1, rl,xyk−1, Wl,k−1|k−1 and al,k−1|k−1,

hl,k−1 = [− sin θ̃l,k−1, 0, cos θ̃l,k−1, 0] (4a)

ξl,k−1 = d̂2l,xyk−1

(
1− e−2σ2

θ,l

)
2

(4b)
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Fig. 3. Flow diagram of the distributed moving target tracking system.

d̂l,xyk−1 = ||[pl,xk−1|k−1, pl,yk−1|k−1]
T − [rl,xk−1, rl,yk−1]

T ||
(4c)

yi,k−1 ← hl,k−1

(
rl,xyk−1 − ai,k−1|k−1

)
(4d)

ki,k−1 ←Wi,k−1|k−1h
T
l,k−1(hl,k−1Wi,k−1|k−1h

T
l,k−1 + ξl,k−1)

−1

(4e)

ai,k−1|k−1 ← ai,k−1|k−1 + ki,k−1yl,k−1 (4f)

Wi,k−1|k−1 ← (I − ki,k−1hl,k−1)Wi,k−1|k−1 (4g)

where ← means a parallel and sequential process and ˆ denotes an
estimated value. N denotes the number of both direct and indirect
neighboring UAVs. Wi,k−1|k−1 is the updated estimate covariance
matrix with 1-step delayed information. Second, with the updated
ai,k−1|k−1 and Wi,k−1|k−1, the estimation process using the real-
time information is

ai,k|k−1 = Uk−1ai,k−1|k−1 (5a)

Wi,k|k−1 = Uk−1Wi,k−1|k−1U
T
k−1 +Mk−1 (5b)

ψi,k ← ai,k|k−1 (5c)

Ψi,k ←Wi,k|k−1 (5d)

hl,k = [− sin θ̃l,k, 0, cos θ̃l,k, 0] (5e)

ξl,k =
1

2
||[pl,xk|k−1, pl,yk|k−1]

T − [rl,xk, rl,yk]
T ||2

(
1− e−2σ2

θ,l

)
(5f)

yi,k ← hl,k (rl,xyk −ψi,k) (5g)

ki,k ← Ψl,kh
T
l,k(hl,kΨl,kh

T
l,k + ξl,k)

−1 (5h)

ψi,k ← ψi,k + ki,kyi,k (5i)

Ψi,k ← (I − ki,khl,k)Ψi,k (5j)

ai,k|k ←
N∑
l=1

λl,kψl,k, λl,k =

1
tr(Wl,k|k)

N∑
m=1

1
tr(Wm,k|k)

(5k)

Wi,k|k ← Ψi,k (5l)

whereMk−1 is the process noise covariance matrix [2] andMk−1 =[
qxBk−1 02×2

02×2 qyBk−1

]
and Bk−1 =

[
T4

4
T3

2
T3

2
T 2

]
, where λl,k is

the diffusion weights of each neighbor and the sum of λl,k equals
one [21].

Similarly, an improved z-DPLKF using both the delayed and real-
time information is constructed in a similar way. A path optimization
strategy [11] is used for each UAV.

V. COMMUNICATION TOPOLOGY

Communication topology examples of a centralized and a dis-
tributed strategies are shown in Fig. 4. The directions of the informa-
tion delivery are indicated by the arrows. In Fig. 4(a), the centralized
strategy entails a command center with a fixed communication
topology. In the distributed strategy, there is no command center and
different UAVs have different direct neighbors that can dynamically
change.

We provide an example of a distributed UAV target tracking
network in Fig. 4(b). UAV 1 can only get the information from 1, 2
and 3 directly. Similarly, UAV 2 can only get 2 and 3’s information,
3 can get 1, 3, 4, and 5’s, 5 can get all the UAV’s direct information.
In addition, in our proposed strategy, the time-delayed information is
used to improve the estimation. For example, at a sampling time, UAV
1 can get the real-time information of UAV 1, 2, 3, 1-step delayed
information of 5 transmitted by 3. The algorithm structure is shown in
Fig.4(c) where 1k mean the information of UAV 1 at sampling time
k. Thus, the UAV distributed network becomes close to a centralized
one and the estimation performance of each UAV will be improved
with the delayed information. The communication complexity of our
proposed strategy is larger than both the centralized and a normal
distributed strategy. However, from the aspects of communication
energy cost and estimation performance, the proposed distributed
strategy has significant advantages.

UAV1 

UAV2 UAV3 

UAV4 
UAV5 

Command center 

(a)

UAV1 

UAV2 UAV3 

UAV4 
UAV5 

(b)

1. DKF and path optimization with information    ,    ,    ,and     ,    . 11 21 31 40 50

2. DKF and path optimization with information    ,    ,    ,and     ,    . 12 22 32 41 51

k. DKF and path optimization with information    ,    ,    ,and        ,      . 1k 2k 3k 4 k−1 5k−1

(c)

Fig. 4. Schematic diagram of UAVs communication topology: (a)
centralized strategy, (b) distributed strategy, (c) algorithm diagram of the
improved distributed strategy.

A communication topology comparison between a normal dis-
tributed method and the novel method using 1-step delayed infor-
mation is depicted in Fig. 5. From Fig. 5, our proposed method
extend the information zone of UAV i. As UAV i can acquire more
information, its estimation performance will be improved.

VI. DIRECT NEIGHBORS SELECTION

In a distributed UAV tracking system, UAV i may have multiple
direct neighbors and these neighbors also have many direct neighbors.
Thus, UAV i may be required to carry a big information traffic in each
communication process. In order to reduce the communication traffic,
we propose a selection method that decides on the best information
from direct neighbors. The schematic diagram of this neighbors
selection process is shown in Fig. 6.

UAV i at most can receive γ direct neighbors’ information (in-
cluding UAV i itself). The cost function to judge which neighbor is
the best at time k is defined as

Cl∗,k =
1

tr(Wl∗,k|k)
(6)
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UAVi 

: cannot send to UAVi : can send to UAVi 

Normal distributed method Novel distributed method 

Information receiving zone of UAV i 

Information receiving zone of UAV i 

Fig. 5. Comparison between a normal distributed method and the novel
method.
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UAV2 

UAV3 

UAV4 

UAV1 

Step 1: Share cost function values 
         with neighbors.  

Step 2: Select the useful neighbors and 
       ask for more information.  

Fig. 6. The process of useful direct neighbors selection.

where l∗ is the direct neighbor (except UAV i itself here). Then,
compare all the neighbors cost functions and pick γ UAVs with
γ smallest Cl∗,k as the final seclected neighbors. The selection
algorithm can be extended also to consider the selection of neighbours
of direct neighbours. As we assume the measurement noises of
different UAVs are all the same and thus, the measurement noise
will not impact the direct neighbors selection. The summary of the
selection process is given in Table I.

TABLE I
SUMMARY OF THE STEEPEST SLOPE OF COST FUNCTION

ESTIMATION

Step 1: UAVs share their cost function values Cl∗,k with
all neighbors;

Step 2: Make a sequence of Cl∗,k and select γ smallest ones as
their useful neighbors;

Step 3: Ask for other information from the useful neighbors and
run the estimation algorithm;

VII. SIMULATION STUDIES

The initial positions of 5 UAVs are [200, 1200, 300]m,
[−300, 500, 100]m, [500,−300, 0]m, [1000, 0, 0]m and
[2000, 0, 0]m. A moving target is originally located
at [1000, 1000, 1000]m. The initial target velocity is
[5, 5 sin πk

30
, 1]m/s, with acceleration error variances

[12, 12, 12]m2/s4. In 5, qx = qy = qz = 10−7. We
assume the target is moving with a constant velocity. The
time interval is T = 1s with 30 measurement points. All
the UAVs have the same initial state matrix X0|0 =
[a0|0, b0|0]

T = [1400, 9, 800, 13, 1100, 5]T and covariance matrix
P0|0 = diag[W0|0,S0|0] = diag[104, 104, 104, 104, 104, 104]. b0|0
and S0|0 are the initial state and covariance matrices of the z-DPLKF.
All the UAVs have the same moving velocity 70m/s, as the UAVs
are fixed wing, the elevation speed has a constraint that [−35, 35]m/s.
Sensor measurement noises are σθ = σφ = 1o and γ = 3 that each

UAV at most can receive two other neighbors’ information. There
is a no fly zone with 200m radius around the target. The flying
collision problem is ignored. A fixed communication topology which
is same as that in Fig.7(b) is applied. In the fixed communication

Fig. 7. The fixed communication topology.

topology, each UAV at most can communicates with 2 other direct
neighbors. Besides, the 1-step delayed information from an indirect
neighbor will not be impacted by the best neighbor selection strategy.
The tracking process is repeated with 300 Monte Carlo runs. The
mean-squared-error (MSE) is acquired from trace of the covariance
matrices. The root-mean-squared-error (RMSE) is calculated from
all the estimates and target true state. Besides, the trajectories are
the mean positions of the UAVs and target with the data from 300
Monte Carlo runs.
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Fig. 8. Trajectories of UAVs tracking a moving target using different
methods with process noise: (a) normal DPLKF, (b) improved DPLKF,
(c) centralized PLKF.

A centralized PLKF [11] and a normal DPLKF are applied for
comparison. Fig. 8 shows the UAVs trajectories using different
strategies. It is obvious that the UAVs’ trajectories are different
using different target tracking methods. The estimation performance
of different strategies are shown in Fig. 8. The mean MSE and
RMSE shown in Fig. 9 are averaged over the 5 UAVs’ data. Form
Fig. 9, both the MSE and RMSE of the improved DPLKF are
better than the normal DPLKF which are close to a centralized
method. At beginning, the performance of the proposed method
is not very good because neighbor selection strategy limited the



available information. As time instant increases, the performance of
the new method becomes better than the normal distributed method.
Furthermore, neither the MSE nor the RMSE can converge to zero
because of the process noise.
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Fig. 9. Performance comparison of different methods for a moving target
tracking with process noise: (a) Mean MSE, (b) amplified view of (a),
(c) Mean RMSE, (d) amplified view of (c).

VIII. CONCLUSION

In a distributed UAV target tracking system, some UAVs cannot
share information because of communication constraints. In order
to use more information from different UAVs, a delayed information
transmission strategy is proposed to improve estimation performance.
A 3D distributed pseudolinear Kalman filter using 1-step delayed
information was developed. The communication topology of the
improved distributed PLKF method is analyzed. A direct neighbors
selection strategy is proposed to reduce communication traffic. Sim-
ulation examples verified that the estimation performance of using
delayed information is better than distributed estimation only using
direct neighbors’ information. The future work will consider using
multiple UAVs to track multiple targets with dynamic communication
topology taking into account multi-step delayed information.
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tributed least mean-square estimation with partial diffusion,”
Signal Processing, IEEE Transactions on, vol. 62, no. 2, pp.
472–484, 2014.
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