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Abstract—In this paper, a region based system is designed for

textured image retrieval. A scalable joint Bayesian segmentation

and feature extraction in the wavelet transform domain is per-

formed. The segmentation map and the extracted region features

are refined by exploiting more decomposition levels. In order to

account for spatial dependencies, Markov Random Field (MRF)

is employed to model the prior distribution of the segmentation

map at each scale. Moreover, a coarse to fine resolution retrieval

procedure is proposed. Experimental results carried out on

remote sensing images corroborate the gain achieved by the

proposed indexing method. Moreover, the resort to an adaptive

smoothing parameter reflecting the image homogeneity improves

the gain provided by the proposed approach.

I. INTRODUCTION

Conventional Content-Based Image Retrieval (CBIR) sys-

tems represent the visual content of an image by extracting

salient features from the whole image. However, most images

contain several objects with various characteristics possibly

scaled differently. Hence, a single global signature computed

for the entire image could not sufficiently capture the relevant

properties of individual regions which results in a significant

semantic gap. Region-Based Image Retrieval (RBIR) systems

aim to overcome such limitation by considering an image as a

set of regions represented by their local features [1], [2], [3],

[4], [5], [6], [7]. This is intuitively closer to the perception

of human visual system. Furthermore, several RBIR systems

operate in the Wavelet Transform (WT) domain since the

latter provides a multiscale image representation consistent

with the human visual system [8]. This is the reason why

we focus in this work on WT-based RBIR. The design of such

systems presents several challenging issues. The first one is the

choice of a segmentation method. The second issue concerns

the definition of salient features that faithfully reflect the

characteristics of each region. Finally, the retrieval step should

find images in the database that have similar categories of

regions to those of the query image. For instance, in [1], the K-

means algorithm based on Mahalanobis distance is applied on

the approximation coefficients of color images. Each resulting

region is characterized by its size, its centroid and the cross-

color covariance matrices defined for the WT subbands at

the coarsest level. The matching of query image regions and

those of a database image is performed thanks to a similarity

measure based on Bhattacharyya distance. In [4], the K-means

allows to find the areas of interest in the WT domain. The

energy of the WT coefficients and, the barycentric coordinates

are chosen as features. In [5], the image is segmented into

homogeneous regions which are transformed with shape adap-

tive discrete wavelet transform (SA-DWT). Then, local color

and texture features are extracted. In [6], the Fuzzy C-means

(FCM) algorithm is used to segment the image into regions

and, robust features are defined in each region. In [7], the

image is decomposed by the Haar WT, the K-means algorithm

is applied to the approximation subband. The energies of the

resulting regions at the coarsest scale are chosen as descriptors.

One common limitation of these approaches relies in using

only one level of WT decomposition for segmentation and/or

extraction of signatures. To alleviate this drawback, in [3],

the K-means also clusters the WT coefficients at the coarsest

scale but the region features vectors consist of the energy

region in all the WT subbands at all the scales. In our recent

work [9], we have defined a hierarchical segmentation and

descriptor extraction in the WT domain. The segmentation

is refined and, the signatures become more representative of

the visual context as we exploit finer scales. The resulting

tree-structured organization of regions and signatures allows

to design a coarse-to-fine fast region matching at the retrieval

step. Note that all aforementioned works do not account for

spatial dependencies during the feature extraction. In different

image processing applications, Markov Random Fields (MRF)

[10] were found to be efficient tools to account for spatial

dependencies [11], [12], [13]. They can operate in the WT

domain thanks to multiresolution MRF models [14], [15],

[12]. In this paper, we aim at designing a RBIR in the WT

domain. The novelty of our approach consists in designing

a joint multiscale segmentation and feature extraction within

a Bayesian framework to capture the spatial dependencies.

Another contribution concerns the design of a coarse-to-fine

scale retrieval procedure. The remainder of this paper is orga-

nized as follows. In Sec. II, the prior statistical models of the

segmentation map and of the WT coefficients are presented. In

Sec. III, the scalable joint segmentation and feature extraction

method is explained. In Sec. IV, the hierarchical retrieval

procedure is presented. Finally, experimental results are given

in Sec. V and some conclusions are drawn in Sec. VI.
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II. PROPOSED METHOD

A. A general overview

First, a J-stage WT is applied to an image of size N ×N .

Then, a joint segmentation and feature extraction are per-

formed from coarse to fine scales. They are firstly performed

on the low-pass subband aJ , resulting in K regions character-

ized by their related features. However, detail coefficients wj,o

at orientations o = 1, 2, 3 at each scale j = J, . . . , 1 contain

image details absent from the approximation subband and are

used to characterize the texture at the segmentation step as

well as the feature extraction one. This motivates to exploit

at each scale j, the information carried by wj,o to derive

a segmentation map xj common to the 3 wavelet subbands

and, the related feature vector Fj . In our work, a Bayesian

framework is adopted by computing a maximum a posteriori

(MAP) estimate of xj from the WT coefficients. Therefore,

we need to model the prior distribution and the likelihood

function.

B. Prior distribution of the segmentation map

A segmentation map xj , such as xj(m,n) ∈ {1, . . . ,K}
for each spatial position (m,n) ∈ {1, . . . , Nj}, Nj =

1
N/2j , is

viewed as a realization of a random process Xj representing

the field of classification labels for each (m,n) at scale j.

We assume that the classification label at a given pixel only

depends on the labels of its neighbors in a second order

neighborhood system. Hence, Xj is considered as a Markov

random process and the prior distribution of Xj is a Gibbs

distribution given by:

p(xj) =
1

Z
exp[−

∑

{(m,n),(m′,n′)}∈C

V (xj(m,n), xj(m
′, n′))]

(1)

where Z is a normalization constant, C is the set of pair-

wise cliques {(m,n), (m′, n′)} and V (xj(m,n), xj(m
′, n′))

is the potential function of the clique {(m,n), (m′, n′)} given

by V (xj(m,n), xj(m
′, n′)) = −β δ(xj(m,n) − xj(m

′, n′))
where δ(·) is the impulse function and, β is a positive

parameter which controls the degree of image homogeneity.

C. Likelihood function

The likelihood function p(wj,1, wj,2, wj,3/xj) is the prob-

ability density function of the magnitudes of wavelet

coefficients(wj,1, wj,2, wj,3) conditionally to the segmentation

map xj . At a given scale j, the observations in different

orientations given the labels are assumed to be independent:

p(wj,1, wj,2, wj,3/xj) =
(Nj ,Nj)∏

(m,n)=(1,1)

p((wj,o(m,n))3o=1/xj(m,n))

=
3∏

o=1

K∏
k=1

∏
(m,n)∈Pk

p(wj,o(m,n)/xj(m,n) = k)

(2)

where Pk is the set of positions (m,n) inside the class k.

Due to the sparsity of the WT coefficients inside a region k,

the density p(wj,o(m,n)/xj(m,n) = k) could be reflected

for each position (m,n) by a Gamma distribution. Denoted

by fj,o,k, it is defined for every v in R
+ by:

fj,o,k(v) = vαj,o,k−1 e−γj,o,kv

γj,o,k
αj,o,kΓ(αj,o,k)

(3)

where αj,o,k and, γj,o,k are respectively the scale and shape

parameters and Γ(·) is the Gamma function. Hence, the

feature vector is Fj = (fj(1)
T, . . . , fj(K)T)T where fj(k) =

(αj,1,k, γj,1,k, αj,2,k, γj,2,k, αj,3,k, γj,3,k)
T is the feature vector

of region k.

III. SCALABLE JOINT BAYESIAN SEGMENTATION AND

FEATURE EXTRACTION

As shown in Figure 1, a MAP estimation of the segmen-

tation map is performed in a scalable way from the coarse

approximation subband to the finer WT subbands and, the

related feature vectors are consequently computed.

A. Proceeding at the approximation subband

The initial segmentation map of the low-pass subband

results from the region growing algorithm [16]. The considered

attributes are the mean values computed over a sliding window

around each approximation coefficient. The vector describing

the approximation subband is Fapp = (µ(1), . . . , µ(K))T

where µ(k) is the mean of the approximation coefficients in

the region k = 1, . . . ,K .

B. Bayesian segmentation of the detail subbands

First, at each scale j = J, . . . , 1 an initial segmentation

map x
(0)
j is inherited from the immediately coarser scale j +

1 if j < J or from the approximation subband if j = J .

Then, the final segmentation map xj and the feature vector Fj

are computed by maximizing the posterior density function of

xj conditionally to (wj,1, wj,2, wj,3) which can be expressed

thanks to the Bayes rule by:

xj = argmaxx p(wj,1, wj,2, wj,3/x)p(x). (4)

The segmentation map xj and, consequently the feature vector

Fj are estimated in an iterative way thanks to the ICM method

[17]. More precisely, given the regions defined by x
(0)
j , the

parameters of their distributions are estimated according to

the Maximum Likelihood (ML) criterion to form the ini-

tial feature vector F
(0)
j . At iteration it, position (m,n), the

MAP estimate of x
(it)
j (m,n) = k is computed conditionally

to wj,1(m,n), wj,2(m,n), wj,3(m,n) and, to x
(it−1)
j (Nm,n)

where Nm,n is the second order neighborhood of (m,n). This

is equivalent to minimize the local energy E
(it)
m,n(k) given by:

E
(it)
m,n(k) = −

3∑
o=1

ln p(wj,o(m,n)/xj(m,n) = k)

+
∑

(m′,n′)∈Nm,n

V (k, xit−1
j (m′, n′)).

(5)

Once the map x
(it)
j is computed at iteration it, F

(it)
j is esti-

mated in the sense of the ML from x
(it)
j and (wj,1, wj,2, wj,3).
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C. Adaptive smoothing parameter

Generally, a predefined value is chosen for the smoothing

parameter β. However, β plays a key role as it reflects

the contribution of the neighborhood in the segmentation

by controlling the region homogeneity degree. Hence, it is

important to adjust its value according to the image content,

and possibly at each scale. To this end, in [18], [19], it is

suggested to find the value βj that maximizes the likelihood

p(xj/wj,1, wj,2, wj,3):

βj = argmax
β

p(wj,1, wj,2, wj,3/xj)p(xj). (6)

However, p(xj) includes the unknown constant Z which

depends on βj and whose evaluation is unfeasible in practical

situations. In [18], [19], the proposed alternative is to max-

imize a Pseudo Maximum Likelihood (PML) criterion JPML

corresponding to the product of local conditional distributions

for all the positions (m,n):

JPML(βj) =
(Nj ,Nj)∏

(m,n)=(1,1)

p((wj,o(m,n))3o=1/xj(m,n))

×p(xj(m,n)/xj(Nm,n))
(7)

After some algebraical steps, it can be proved that βj is the

solution of the following equation:

(Nj ,Nj)∑
(m,n)=(1,1)

Um,n(xj(m,n)) =

(Nj,Nj)∑
(m,n)=(1,1)

K∑

k=1

Um,n(k)pm,n(k)e
βjUm,n(k)

K∑

k=1

pm,n(k)e
βjUm,n(k)

(8)

where Um,n(k) is the number of neighbors in Nm,n

that have the label k ∈ {1, ...,K} and, pm,n(k) =
p((wj,o(m,n))3o=1/xj(m,n) = k). The previous step in-

volves an observed map xj and also the knowledge of

p(wj,1, wj,2, wj,3/xj) associated to Fj . However, in our case,

xj and Fj are unknown. Hence, we propose to couple the

estimation of βj with that of xj and Fj in an iterative way

thanks to Algorithm 1. More precisely, based on the regions

defined by x
(0)
j and the initial feature vector F

(0)
j estimated

according to the ML criterion, an initial parameter β
(0)
j is

estimated according to the PML criterion. At iteration it and

position (m,n), x
(it)
j (m,n) is updated by minimizing the

local energy E(it) whose expression involves x
(it−1)
j , F

(it−1)
j

and, β
(it−1)
j . Once the new x

(it)
j and consequently F

(it)
j are

obtained, a new value of the PML estimator β
(it)
j is derived

from x
(it)
j and, F

(it)
j . The algorithm is stopped when the

variation |β
(it)
j − β

(it−1)
j | becomes below a given threshold

ε.

IV. SCALABLE RETRIEVAL PROCEDURE

A. Matching procedure

The goal consists in finding the images Idb in the database

whose regions are the most similar to those of a query

image Iq. To this end, we proceed in two steps: we match

the approximation subbands then the detail ones. Each class

k = 1, . . . ,Kq in the approximation subband of Iq is firstly

assigned to a class Q[k] ∈ {1, . . . ,Kdb} in the approxima-

tion subband of Idb whose prototype is the closest to that

of k: Q[k] = argmink′∈{1,...,Kdb}D(µ(k), µ(k′)) where D
denotes the Normalized Euclidean Distance (NED). Hence,

we define the similarity Sapp(I
q, Idb) = D(Fq

app,Fdb
app[I

q])
between the approximation subband of Iq and that of Idb

where F
db
app[I

q] = (µ(Q[1]), . . . , µ(Q[Kq]))T is formed by

the mean values µ(Q[k]) of the matched regions Q[k] of

Idb to the regions k = 1, . . . ,Kq of Iq. The matching

procedure continues by exploiting the information contained

in the wavelet coefficients by assigning to each class k of Iq

at scale j a class Qj[k] of Idb at the same scale j if it satisfies

the condition: Qj[k] = argmink′∈{1,...,Kdb}D(f
q
j (k), f

db
j (k′))

where f
q
j (k) and f

db
j (k′) are respectively the descriptors of

regions k and k′ at scale j. Thus, it is easy to define the

similarity Sj(I
q, Idb) = D(Fq

j ,F
db
j [Iq]) between the detail

subbands of Iq and those of Idb at scale j, where F
db
j [Iq] =

(f db
j (Qj[1])

T, . . . , f db
j (Qj [K

q])T)T.

B. Coarse-to-fine scale retrieval

The search is performed in a coarse-to-fine resolution way

until the user is satisfied. It starts by only considering the

information at the approximation level: the system returns the

R images Idb of the database that minimize Sapp(I
q, Idb). If

the user is not satisfied, the additional information carried by

the WT subbands from scale J to a chosen scale Ju at which

he stops the search procedure is exploited. In this case, the

R images Idb of the database that minimize Sapp(I
q, Idb) +∑Ju

J Sj(I
q, Idb) are returned.

V. EXPERIMENTAL RESULTS

A. Validation of the segmentation approach

Several synthetic images were tested to assess the reliability

of our segmentation approach. For reasons of space, the

illustration are just given for 2 images with respectively 2 and

5 different textures. A two-stage (J = 2) 5/3 lifting transform

is retained. Then, the scalable segmentation is performed, the

parameter β being firstly set manually so as β ∈ {0, 2}. Note

that if β = 0, no spatial dependency is considered in the

segmentation. In a second phase, βj at scales j ∈ {1, 2} are

adjusted by PML estimation. Figure 2 shows the result of the

segmentation of the approximation subband and that of the

WT subbands at scales j ∈ {1, 2} for the different values of

β (or estimated βj). For both images, we note that the choice

of the smoothing parameter has a significant influence on the

relevance of the segmentation. Besides, the best segmentation

results are obtained when the βj are estimated according to

the PML criterion. Moreover, the segmentation results are

improved by accounting for finer detail subbands.

B. Retrieval results

To test retrieval performances we use a training database

consisting of the first channels of 451, 128 × 128 SPOT3
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satellite images representing regions belonging to one of the

following categories (urban, field, water, mountain, aeroport).

J = 2 scales of a 5/3 lifting scheme are applied to each

database image, then for different preset values of β, scalable

joint segmentation and feature extraction is performed. All the

images in the database are considered as queries. Figure 3 (a

,b) provides the plot of average precision PR versus average

recall RC computed over all the queries for β = 0 and β =
0.2 and, in three cases where the user stops the search at the

approximation level, and at the detail levels Ju = J and Ju =
J − 1. It indicates that the performances are improved when

we account for the detail coefficients and especially for finer

scales. Figure 3 (c,d) provides the plot of average precision

and recall obtained for different numbers R of returned images

for β = 0.2. It shows that the superiority of considering all

scales (Ju = 1) becomes more significant for bigger values of

R. Besides, Table I proves that accounting for further scales

requires more computational time to analyze an image. Figure

4 (a,b) shows the evolution of average precision PR computed

for R = 10 returned images and for different values of fixed

β. The performances are the best for a particular value β∗.
However, Figure 4 (c,d) indicates that the best performances

are provided when βj are estimated by PML.

C. Comparison with state-of-art approaches

The first part of Figure 5 shows improvement of perfor-

mances given by RBIR in comparison with standard CBIR

approach based on the same nature of features. The second

part of Figure 5 shows that our approach also outperforms

the three WT-based RBIR systems: Hirbir [3], Windsurf [1]

and Amoda [7], except for the case of β = 0 when spatial

dependencies are ignored.

VI. CONCLUSION

In this paper, a new RBIR system accounting for spatial

dependencies in the WT coefficients is presented. The nov-

elty relies on the joint scalable Bayesian segmentation and

feature extraction in the WT domain. Moreover, the scalable

organization of features enables a coarse to fine scale retrieval

procedure. Simulations show improvement of retrieval perfor-

mances when a multiscale strategy is considered. Adapting

the smoothing parameter achieves further improvement of the

performances. Comparison with standard CBIR and WT-based

RBIR systems proves that a region based approach accounting

for spatial dependencies has a significant impact on retrieval

performances which is more significant in the case of adaptive

smoothing parameter.
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Fig. 4. Influence of the parameter β on retrieval performances.
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Fig. 5. Comparison between our approach (Ju = 1) and state-of-the art approaches.

Algorithm 1 Modified ICM algorithm.

Require: x
(0)
j , ε

F
(0)
j = ML estimator from(x

(0)
j , wj,1, wj,2, wj,3)

β
(0)
j = PML estimator from(x

(0)
j ,F

(0)
j )

∆=1;

it = 1
while ∆ > ε do

for m = 1, . . . , Nj do

for n = 1, . . . , Nj do

for k = 1, . . . ,K do

compute E(it)
m,n(k)

end for

x
(it)
j (m,n) = arg min

k=1,...,K
E(it)

m,n(k)

end for

end for

F
(it)
j = ML estimator from (x

(it)
j , wj,1, wj,2, wj,3)

β
(it)
j = PML estimator from (x

(it)
j ,F

(it)
j )

∆ =| β
(it)
j − β

(it−1)
j |

it←− it + 1
end while
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