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Abstract—The problem of cyclic spectrum estimation for
almost-cyclostationary processes with unknown cycle frequencies
is addressed. This problem arises in spectrum sensing and source
location algorithms in the presence of relative motion between
transmitter and receiver. Sufficient conditions on the process and
the cycle frequency estimator are derived such that frequency-
smoothed cyclic periodograms with estimated cycle frequencies
are mean-square consistent and asymptotically jointly complex
normal. Under the same conditions, the asymptotic complex
normal law is shown to coincide with the normal law of the case
of known cycle frequencies. Monte Carlo simulations corroborate
the effectiveness of the theoretical results.

Index Terms—Cyclostationarity; Asymptotic Normality;
Doppler effect

I. INTRODUCTION

Second-order almost-cyclostationary (ACS) processes in the

wide sense are an appropriate model for signals encountered

in several fields of application including communications,

radar, telemetry, acoustics, mechanics, biology, econometrics,

climatology, and astronomy. For these processes, underlying

periodicities are hidden by the mixture or composition with

random phenomena and the autocorrelation function is almost-

periodic in time. Its Fourier series expansion has frequencies

and coefficients referred to as cycle frequencies and cyclic au-

tocorrelation functions, respectively. The Fourier transform of

the cyclic autocorrelation function at a given cycle frequency

is called cyclic spectrum. It represents the density of spectral

correlation between two spectral components separated by a

quantity equal to the cycle frequency [8], [16].

Cyclostationarity-based signal processing algorithms are

signal selective since cycle frequencies are related to the fre-

quencies of the underlying periodicities that are characteristic

of each ACS process. These algorithms allow to extract char-

acteristics of the signal-of-interest (SOI) even if it is embedded

in noise and interference, provided that the observation interval

is sufficiently large. In fact, cyclostationarity-based algorithms

benefit from the existence of reliable estimators of the cyclic

statistical functions, provided that the process fulfills very mild

conditions on its finite or practically finite memory and the

cycle frequency of interest is exactly known. In particular,

the frequency-smoothed cyclic periodogram is a mean-square
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consistent and asymptotically complex normal estimator of the

cyclic spectrum [4], [5].

In many cases of interest the underlying periodicities are

not exactly known and, consequently, the cycle frequencies

of the SOI are known with some degree of uncertainty. In

communications, this is the case of non cooperative signal

detection and estimation, or in the presence of Doppler effect

[15]. In human biology, periods of circadian rhythms and

hormonal cycles are not exactly known and can vary from

different individuals and, for the same individual, in different

time periods.

An error in the knowledge of the cycle frequency puts a

limit to the finest cycle frequency resolution of the signal

processing algorithm. This resolution is of the order of the

reciprocal of the data-record length. Consequently, the cycle

frequency uncertainty puts an upper limit to the maximum

data-record length and, hence, to the minimum signal-to-noise

ratio (SNR) or signal-to-interference ratio (SIR) for which

satisfactory performance can be achieved.

In this paper, the problem of cyclic spectral analysis is

treated in the case of uncertain cycle frequency. Specifically,

the frequency-smoothed cyclic periodogram is considered as

estimator of the cyclic spectrum when an estimate of the cycle

frequency is adopted in place of its exact value. Sufficient con-

ditions are found on the cycle frequency estimate such that the

frequency-smoothed cyclic periodogram with estimated cycle

frequency is mean-square consistent and asymptotically com-

plex normal. A joint characterization of frequency-smoothed

cyclic periodograms at different cycle frequencies is also

provided. Moreover, it is shown that asymptotically, under the

derived conditions, frequency-smoothed cyclic periodograms

with known cycle frequencies and those with estimated cycle

frequencies have the same joint complex normal distribution.

The fulfillment of these conditions for existing cycle frequency

estimators is discussed.

Results of extensive Monte Carlo simulations show the

effectiveness of the derived theoretical results.

A notable application of the derived results consists in

extending to the case of unknown cycle frequencies the

structures of detectors and signal-parameter estimators based

on cyclic spectrum estimates with known cycle frequencies.

In particular, detectors [10], [16, Sec. 6], signal classification

algorithms [1], [2], [16, Sec. 8], and source location and
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channel identification algorithms [8, Secs. 9, 10] designed

for the absence of motion between transmitter and receiver,

can be considered in the presence of Doppler effect by

replacing, into the cyclic spectrum estimators, the known cycle

frequency value with a sufficiently accurate estimate satisfying

the conditions derived in the paper.

The paper is organized as follows. In Section II, the sta-

tistical characterization of ACS processes and the estimation

of the cyclic spectrum with known cycle frequency are briefly

reviewed to introduce notation and for subsequent reference. In

Section III, the needed assumptions are made and the mean-

square consistency and joint asymptotic complex normality

of frequency-smoothed cyclic periodograms with estimated

cycle frequencies is proved. Numerical results are presented

in Section IV. Conclusions are drawn in Section V.

II. ALMOST-CYCLOSTATIONARY PROCESSES

A. Statistical Characterization

A second-order complex-valued stochastic process x(t) is

said to be almost-cyclostationary in the wide-sense if its first

and second-order moments are almost-periodic functions of t
[8]. That is,

E
{
x(t+ τ) x(∗)(t)

}
=

∑

α∈A

Rα
x
(τ) ej2παt (2.1)

where superscript (∗) denotes an optional complex conjuga-

tion. The function in (2.1) is the autocorrelation function if (∗)
is present and the conjugate autocorrelation function if (∗) is

absent. In (2.1), A is the countable set, depending on (∗), of

the possibly incommensurate (conjugate) cycle frequencies α,

and the Fourier coefficients

Rα
x
(τ) , lim

T→∞

1

T

∫ T/2

−T/2

E
{
x(t+τ)x(∗)(t)

}
e−j2παtdt (2.2)

where subscript x , [xx(∗)], are referred to as (conjugate)

cyclic autocorrelation functions.

Let

XZ(t0, f) ,

∫ t0+Z/2

t0−Z/2

x(t) e−j2πftdt (2.3)

be the short-time Fourier transform (STFT) of x(t). The

(conjugate) cyclic spectrum is defined as

Sα
x(f) , lim

∆f→0
lim

T→∞

1

T

∫ T/2

−T/2

∆f E
{
X 1

∆f
(t, f)

·X(∗)
1
∆f

(t, (−)(α− f))
}
dt (2.4)

where (−) is an optional minus sign linked to the optional

conjugation (∗). It is the Fourier transform of Rα
x
(τ) and is

non zero only for α ∈ A. That is, when (∗) is present, spectral

components of x(t) separated by quantities equal to a cycle

frequency α are correlated.

B. Cyclic Spectrum Estimation

Let x(t) be a zero-mean process satisfying the following

assumptions, where z1 and z2 denote any of x or x∗.

AS1. All the 2nd- and 4th-order cumulants of z1 and z2
are uniformly almost-periodic functions of t for all values

of the lag parameters [11, As. 3.1], [12, As. 2.4.2], with

summable sequences of the suprema of the Fourier coefficients

[11, As. 3.2, 3.3], [12, As. 2.4.3]. �

AS2. For every k, the kth-order absolute cross-moments

of x(t + τ1), . . . , x(t + τk) are bounded [11, As. 5.2], [12,

As. 2.4.16]. �

AS3. For every k, the kth-order cumulants are almost-

periodic functions of t, summable with respect to the lag

parameters [11, As. 5.1], [12, As. 2.4.15]. �

AS4. There is no cluster (accumulation point) of (conjugate)

cycle frequencies except possibly ±∞ [11, As. 4.4], [12,

As. 2.4.10]. �

Assumptions AS1–AS4 are verified by almost all man-made

modulated signals adopted in communications, radar, sonar,

and telemetry.

AS5. Let wT (t) = a(t/T )/T be the lag-product tapering

window, with a(t) bounded, summable, with unit area, com-

pact support [−1/2, 1/2], and Fourier transform A(f) with

rate of decay to zero O(|f |−r), r > 1, as |f | → ∞ [11,

As. 3.5], [12, As. 2.4.5]. �

AS6. Let be q(τ) ∈ L1(R) and its Fourier transform Q(f) ∈
L1(R) be continuous almost everywhere (a.e.) and such that

q(0) =
∫
R
Q(f) df = 1 [14, As. 3.2]. �

AS7. The (conjugate) cyclic spectra Sα
x(f) are summable

[14, As. 3.3]. �

Let

I(T )
x (α, f) ,

1

T
XT (t0, f)X

(∗)
T (t0, (−)(α− f)) (2.5)

be the (conjugate) cyclic periodogram at (conjugate) cycle

frequency α, where XT (t0, f) is the STFT of x(t) defined

according to (2.3).

The frequency-smoothed (conjugate) cyclic periodogram is

defined as [7, Chap. 13]

S(T,∆f)
x

(
α, f

)
, I(T )

x

(
α, f

) ⊗
f

1

∆f
Q
( f

∆f

)
(2.6a)

=

∫

R

R(T )
x

(
α, τ

)
q(∆f τ) e−j2πfτdτ (2.6b)

where R
(T )
x

(
α, τ

)
is the (conjugate) cyclic correlogram of

x(t) [8, eq. (4.1)], [16, eq. (3.1)], ⊗f denotes convolution with

respect to f , and Q(f/∆f)/∆f is the frequency-smoothing

window with bandwidth ∆f and inverse Fourier transform

q(∆f τ).

Theorem 1. Under Assumptions AS1–AS7, the frequency-

smoothed (conjugate) cyclic periodogram (2.6a), (2.6b) is a

mean-square consistent estimator of the (conjugate) cyclic
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spectrum as T → ∞ and ∆f → 0 with T∆f → ∞. Moreover,

the random variables

U
(T,∆f)
i ,

√
T∆f

[
S(T,∆f)
x

(
αi, fi

)
−Sαi

x (fi)
]

i = 1, . . . ,M
(2.7)

are asymptotically jointly complex normal [4], [5], [7,

Chap. 15], [12, Sec. 4.7]. �
Cycle frequency estimators based on (conjugate) cyclic

correlograms and (conjugate) frequency-smoothed cyclic pe-

riodograms are proposed in [3], [6], and [9]. See [16, Sec. 7]

for a review.

III. FREQUENCY-SMOOTHED CYCLIC PERIODOGRAM

WITH ESTIMATED CYCLE FREQUENCY

AS8. Let α(T ) be an estimate of the (conjugate) cycle

frequency α0 that converges almost surely (a.s.) to α0 with

rate T−b, with b > 0. �

AS9. The estimation error ∆α(T ) , α(T )−α0 is zero mean

and such that, as T → ∞
∣∣∣E

{
(∆α(T ))n

}∣∣∣ 6 cn
T n(1+µ)

(3.1)

with µ > 0 and cn > 0 satisfying

+∞∑

n=1

an

n!
cn < ∞ (3.2)

for some a > 0. �

AS10. Let α
(T )
i be estimates of M different (conjugate)

cycle frequencies α0,i, i = 1, . . . ,M , such that

lim
T→∞

α
(T )
i = α0,i almost surely (3.3)

where estimates α
(T )
i are made starting from (conjugate) cyclic

correlograms R
(T )
x (α, τ), α ∈ Di, in non overlapping cycle

frequency intervals Di, that is, Di

⋂
Dj = ∅ for i 6= j. �

In the following, the main result of the paper is stated.

Theorem 2. Under Assumptions AS1–AS7, AS9 (with µ >

1/3) for every ∆α
(T )
i = α

(T )
i − α0,i, and AS10, the random

variables

U
(T,∆f)
i ,

√
T∆f

[
S(T,∆f)
x

(
α
(T )
i , fi

)
− S

α0,i
x (fi)

]

i = 1, . . . ,M (3.4)

are asymptotically (T → ∞ and ∆f → 0 with T∆f → ∞)

zero-mean jointly complex normal with asymptotic covariance

matrix with entries Σij and asymptotic conjugate covariance

matrix with entries Σ
(c)

ij , having the same expressions (see

[12, eq. (4.143)] for the covariance) as the case of known

(conjugate) cycle frequencies (Theorem 1).

Proof: The proof is only sketched here due to lack of space.

See [14] for a complete proof.

Starting from the mean-square consistency of the cyclic

correlogram [13, Theorem 3.3] and using the Fourier transform

(2.6b), as T → ∞ and ∆f → 0 with T∆f → ∞, we have

1) E{U (T,∆f)
i } → 0;

2a) cov{U (T,∆f)
i , U

(T,∆f)
j } → Σij finite;

2b) cov{U (T,∆f)
i , U

(T,∆f)
j

∗} → Σ
(c)

ij finite.

In 2a) and 2b), the proof of cases i = j and i 6= j need

to be treated separately. In fact, for i 6= j, according to

Assumption AS10, the asymptotic independence of α
(T )
i and

α
(T )
j is exploited.

Then, using the asymptotic result [11, eq. (C2)], [12,

eq. (3.126)]

cum{
√
TR(T )

x (αi, τi), i = 1, . . . , k} = O(T−k/2+1) (3.5)

and (2.6b) we have

3) cum{U (T,∆f)
1

[∗]1 , . . . , U
(T,∆f)
k

[∗]k} → 0 for k > 3

where superscript [∗]i denotes ith optional complex conju-

gation. Define U
(T,∆f) , [U

(T,∆f)
1

[∗]1 , . . . , U
(T,∆f)
k

[∗]k ] and

ω , [ω1, . . . , ωk]. The cumulant of the complex random

variables U
(T,∆f)
i

[∗]i , i = 1, . . . , k, defined according to [11,

App. E], [12, Sec. 1.4.2], [18, App. A] is

cum
{
U

(T,∆f)
1

[∗]1 , . . . , U
(T,∆f)
k

[∗]k
}

, (−j)k
∂k

∂ω1 . . . ∂ωk
log E

{
ejω

T
U

(T,∆f)
}
. (3.6)

Thus, accounting for items 1–3, asymptotically, the logarithm

of the joint characteristic function of U
(T,∆f)
i

[∗]i , i = 1, . . . , k

is a quadratic form in the ωk’s. That is, the U
(T,∆f)
i are jointly

complex normal. �
As a corollary, from item 1 we have that the frequency-

smoothed (conjugate) cyclic periodogram with estimated (con-

jugate) cycle frequency is asymptotically unbiased with rate

of decay to zero of the bias faster than (T∆f)−1/2 and from

item 2 we have that its variance is O((T∆f)−1). Therefore, it

is a mean-square consistent estimator of the (conjugate) cyclic

spectrum. Note that the only mean-square consistence can be

proved under the less restrictive Assumptions AS1–AS7 and

AS8 with b = 1 [14].

IV. NUMERICAL RESULTS

In this section, numerical results are reported aimed at

corroborating the theoretical results (Theorem 2) on the mean-

square consistency and asymptotic complex normality of the

frequency-smoothed cyclic periodogram with estimated cycle

frequency. A pulse-amplitude modulated (PAM) signal x(t)
with binary stationary white modulating sequence, raised

cosine pulse with excess bandwidth η = 0.35, and bit period

Tp = 8Ts, with Ts = 1/fs the sampling period, is considered.

By denoting by Ê{U} the sample mean of the random

variable U and by U (T,∆f) any of the random variables

U
(T,∆f)
i in (3.4), the sample variance

σ2(T,∆f)(α, f) , Ê
{∣∣∣U (T,∆f)(α, f)− Ê

[
U (T,∆f)(α, f)

]∣∣∣
2}

(4.1)

and the sample second-order moment

γ(T,∆f)(α, f) , Ê
{(

U (T,∆f)(α, f)− Ê
[
U (T,∆f)(α, f)

])2}

(4.2)
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Fig. 1. Sample variance as function of f for different values of T : (Thin line) U (T,∆f)(αtrue, f) and (thick line) U (T,∆f)(α(T ), f).

Fig. 2. Magnitude of the sample second-order moment as function of f for different values of T : (Thin line) U (T,∆f)(αtrue, f) and (thick

line) U (T,∆f)(α(T ), f).

are evaluated as functions of f by 104 Monte Carlo trials

for data-record lengths T = 2nTs and frequency-smoothing

window widths ∆f = 2−(1+n/2)fs, with n = 9, . . . , 12. Both

σ2(T,∆f) and γ(T,∆f) are needed to characterize a non circular

complex normal distribution [17]. Accordingly with the results

of Theorem 2, when ideally n → ∞, we have that T → ∞,

∆f → 0 and T∆f = 2n/2−1 → ∞.

The two cases α = αtrue = 1/Tp and α = α(T )with

α(T ) the estimate of [3] are compared. The estimate of [3]

is asymptotically normal with error variance (and moments)

satisfying Assumption AS9 with µ = 1/2 and ∀a ∈ R [14].

According to the results of Theorem 2, we have that the

functions σ2(T,∆f)(α, f) (Fig. 1) and γ(T,∆f)(α, f) (Fig. 2)

with α = α(T ) become closer and closer to the analogous

functions with α = αtrue.

Specifically, let θ(T,∆f)(α, f) denote any of the functions

σ2(T,∆f)(α, f) or γ(T,∆f)(α, f), and let us define the normal-

ized root mean-squared error (NRMSE)

NRMSEθ ,

[∫

B

∣∣θ(T,∆f)(α(T ), f)− θ(T,∆f)(αtrue, f)
∣∣2 df

] 1
2

2016 24th European Signal Processing Conference (EUSIPCO)

163



·
[∫

B

∣∣θ(T,∆f)(αtrue, f)
∣∣2 df

]− 1
2

(4.3)

with B = [−fs/2, fs/2]. In Table I, the NRMSE for σ2(T,∆f)

and γ(T,∆f) is shown to be decreasing for increasing values

of the data-record length T and decreasing values of ∆f .

The results corroborate the convergence properties proved in

Theorem 2.

T/Ts ∆f/fs NRMSEσ2 NRMSEγ

2
9

2
−5.5 2.361 0.801

210 2−6 0.330 0.094

211 2−6.5 0.069 0.078

2
12

2
−7 0.027 0.033

TABLE I
NRMSE FOR σ2(T,∆f)

AND γ(T,∆f)
FOR INCREASING VALUES OF

THE DATA-RECORD LENGTH T AND DECREASING VALUES OF THE

FREQUENCY-SMOOTHING WINDOW-WIDTH ∆f .

Finally, in Fig. 3, the marginal empirical CDF of the

imaginary part of U (T,∆f), with f/fs = 0.075 and T = 210Ts,

normalized to its sample variance σ
(T,∆f)
I , is reported for

known cycle frequency α = αtrue (dotted line) and estimated

cycle frequency α = α(T ) (solid thick line) and is compared

with the CDF of a standard normal random variable (solid

thin line). The CDF for α = α(T ) closely follows the CDF

for α = αtrue and the standard normal distribution.

Simulation results not reported here show that satisfactory

performance can be obtained by exploiting the CDP [9] cycle

frequency estimator.

−3 −2 −1 0 1 2 3
0
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0.4

0.5

0.6

0.7
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0.9

1

ξ

CDF f =0.075f
s

 

 

Normal Distribution

α=α
true

α=α
(T)

Fig. 3. Marginal empirical CDF of the imaginary part of U (T,∆f),

with f/fs = 0.075, normalized to its sample variance σ
(T,∆f)
I , for

known cycle frequency α = αtrue (dotted line) and estimated cycle

frequency α = α(T ) (solid thick line) compared with the CDF of a
standard normal random variable (solid thin line).

V. CONCLUSION

Sufficient conditions are derived for almost-cyclostationary

processes and for cycle frequency estimators such that

frequency-smoothed cyclic periodograms with estimated cycle

frequencies are mean-square consistent and asymptotically

jointly complex normal. If the nth-order moment of the cycle

frequency estimation error is O(T−n(1+µ)) with µ > 1/3,

then frequency-smoothed cyclic periodograms with estimated

and known cycle frequencies have the same complex normal

distribution. The derived results allow one to extend to the

case of relative motion between transmitter and receiver most

of the signal processing algorithms based on cyclic spectrum

measurements and designed for the case of no motion between

transmitter and receiver.
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