
A Simple Counting Estimator of
Network Agents’ Behaviors: Asymptotics

Stefano Marano
DIEM, University of Salerno, Fisciano (SA), Italy

E-mail: marano@unisa.it

Peter Willett
ECE, University of Connecticut, Storrs, CT, USA

E-mail: willett@engr.uconn.edu

Abstract—Recent works address the problem of estimating
agents’ behaviors in complex networks, of which social networks
are a prominent example. Many of the proposed techniques work
but at the cost of a substantial computational complexity, which
is not permitted when dealing with big data real-time analysis.
This raises the question of whether a very simple nonparametric
counting estimator works in practical problems. We propose such
an estimator and investigate its asymptotic properties for large
number of agents N and/or for large network observation time
T . The asymptotic optimality of the estimator is proven and
computer experiments are provided to assess its performance for
finite values of N and T .

I. INTRODUCTION

Many real-world inference problems over complex networks
can be abstracted to a general model in which there are N
agents each taking some course of action, independently
of each other, but depending upon the network status. The
network status changes over time, which reflects in different
agents’ behaviors. A network analyzer observes all the agents’
courses of actions for a certain interval of time T . For
T,N � 1 the problem is to profile all the N agents, in the
sense of estimating what course of action they are likely to
take, under each possible state of the network.

The problem formulation addressed in this paper is essen-
tially borrowed from [1], [2], where a maximum likelihood
approach is pursued by means of the EM (Expectation Maxi-
mization) algorithm. In contrast to the computationally expen-
sive iterative method of [1], [2], our focus here is in showing
that a simple estimator based on occurrence counting provides
good performance for values of T and N of practical interest,
and is asymptotically optimum. The proposed estimator is also
naturally suited for a time-sequential implementation.

Our work complements that in [3], where a parametric
approach is pursued: conditional on the state of network, each
agent is characterized by some probability distribution, which
is completely known but for an unknown scalar parameter.
In contrast, we assume minimum a-priori knowledge and
develop a nonparametric framework –in particular we assume
no knowledge of the underlying probability distributions.
As typical in nonparametric estimation, the lack of a-priori
knowledge is paid in the coin of the number of observations
needed: accordingly, we pay special attention to the asymptotic
properties (consistency) of the developed estimator, in the
regimes of large N and/or T .

Depending on the practical application, sometimes the goal
is to estimate some coarse characteristic of the agents, such
as the agent’s most likely choice, or the expected value
of its outputs, and so forth. We refer to the challenging
problem of estimating the whole agents’ distributions, from
which estimators of coarser agents’ characteristics can be
straightforwardly derived, by a plug-in approach that employs
statistical functionals of the empirical distribution. In this
sense, we are approaching the more general nonparametric
inference problem.

The research line pursued in this paper follows our recent
investigation started with [4]. In turn, the general context in
which this work naturally lies is that of inference in distributed
systems, which has represented an important portion of the
signal processing research in the last decades. Some very
partial references to this vast literature, biased by our personal
interests, are as follows: [5]–[7] (distributed inference), [8],
[9] (learning), [10], [11] (data fusion), [12], [13] (energy
efficiency), [14]–[16] (censoring), [17], [18] (inference vs.
communication), [19], [20] (cooperation/adaptation), [21], [22]
(consensus).

The remainder of the paper is organized as follows. Sec-
tion II formalizes the problem. The main theoretical results
are given in Sect. III, with a sketch of the proofs provided in
Appendix A. Numerical investigations are reported in Sect. IV,
and a summary is given in Sect. V.

II. PROBLEM SETTING

Consider N independent agents, each taking one course of
action at discrete time t ∈ T := {1, . . . , T}, a time at which
the network status is Ht –a random variable taking values on
a finite set H, say H = {1, . . . , |H|}. The status Ht of the
network changes with t, irrespective of time, according to a
certain distribution π = [π1, . . . , π|H|], where πh := P(Ht =
h) is constant in t and strictly positive. Let Xi,t be the random
variable representing the course of action of agent i ∈ N :=
{1, . . . , N} at time t, taking values on the finite set X , say
X = {1, . . . , |X |}. For i ∈ N , j ∈ H, x ∈ X , t ∈ T , let
us introduce the conditional probability mass function (PMF)
pi,j = [pi,j(1), pi,j(2), . . . pi,j(|X |)], whose entries are

pi,j(x) := P (Xi,t = x | Ht = j) , (1)

which are assumed strictly positive, and the corresponding
unconditional PMF: pi := P(Xi,t = x) =

∑
j∈H pi,jπj .
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The observation matrix made available to the network
analyzer is: 

X1,1 X1,2 . . . X1,T

X2,1 X2,2 . . . X2,T

...
...

. . .
...

XN,1 XN,2 . . . XN,T

 . (2)

In the above each row corresponds to a single agent and
each column refers to a time instant. Therefore, the i-th row
represents the T actions taken by agent i at successive time
instants, and the t-th column represents the action taken by the
N agents in the single time instant t. The N entries over any
column are statistically dependent, but conditionally indepen-
dent given the state of the network characterizing that column.
Entries belonging to different columns are independent, and
entries over the i-th row are independent and identically
distributed with distribution pi. By observing the NT values
in (2), we want to estimate the N |H| |X | probabilities in (1),
where these PMFs are assumed completely unknown, as is
the a-priori distribution π of the network status. The only
condition that the PMFs are known to obey is the following:
For all i ∈ N and j ∈ H,

P (Xi,t ∈ Xj |Ht = j) > P (Xi,t ∈ Xk|Ht = j) , k 6= j. (3)

In the above {Xi}|H|i=1 is a partition of the set X , and obviously
P (Xi,t ∈ Xj) means

∑
x∈Xj

P(Xi,t = x). The assumption
says that when the state of network is j, the probability of the
associated event Xj is larger than that of all other events Xk,
k 6= j. Throughout the paper, condition (3) is always assumed.

III. COUNTING ESTIMATOR AND ITS ASYMPTOTIC
PERFORMANCE

Let I(A) be the indicator function of A, and let Ct(j;N) :=∑
i∈N I(Xi,t ∈ Xj) be the number of agents whose output ∈

Xj (loosely speaking, “choose j”) at time t. We want to study
the asymptotic performance of the following simple estimator:

(step 1) Ĥt := {j : Ct(j;N) ≥ Ct(m;N), ∀j 6= m} , (4)

(step 2) P̂i,j(x) :=

∑
t∈T I(Xi,t = x

⋂
Ĥt = j)∑

t∈T I(Ĥt = j)
, (5)

where in the first step, ties are resolved by choosing j
uniformly at random among the candidates, and in the second
step P̂i,j(x) := 1/|X | whenever the denominator of the RHS
of (5) is zero. The first step is a counting over the columns
of (2) and provides an estimate of the network status at time t;
the second step is a counting over the rows and provides the
empirical estimate of (1).

Let us introduce some notation. We denote by X =
[Xt,1, . . . , Xt,N ] the t-th column of matrix (2) (subscript t
omitted), and by Xi be the vector X with the i-th entry
omitted. Lowercase letters x and xi denote their realizations.

We let:

qh(x) = P (X = x | Ht = h) ,
qh(xi) = P (Xi = xi | Ht = h) ,
nj = {No. of occurrences of Xj in x},
mj,x = {No. of occurrences of Xj in xi}+ I(x ∈ Xj),
ñx = {No. of occurrences of x in x},
m̃x = {No. of occurrences of x in xi}.

Finally, let us introduce a short-hand for the multinomial
distribution:

Mul
(
k1, . . . , k|X |;M,p

)
:=

M !∏
x∈X kx

∏
x∈X

[p(x)]kx

where k1, . . . , k|X | are integers whose sum is M , and p is a
PMF with alphabet X .

The following theorems represent our main result. They are
valid under assumption (3), and the convergences are in the
almost sure (a.s.) sense.

THEOREM 1: Fix N . For x ∈ X , i ∈ N , j ∈ H, we have

lim
T→∞

P̂i,j(x)

=

∑
h∈H

pi,h(x)πh
∑

xi:

{
mj,x≥ml,x

j 6=l

}
qh(xi)∑

l∈H δmj,x,ml,x

∑
h∈H

πh
∑

x:

{
nj≥nl

j 6=l

}
qh(x)∑
l∈H δnj ,nl

. (6)

Also, in the special case where pi,j is constant with i, ∀j ∈ H,

qh(x) = Mul
(
ñ1, . . . , ñ|X |;N, pi,h

)
,

qh(xi) = Mul
(
m̃1, . . . , m̃|X |;N − 1, pi,h

)
.

(7)

�

THEOREM 2: Fix T . For x ∈ X , i ∈ N , j ∈ H, we have

lim
N→∞

P̂i,j(x) =

∑
t∈T I(Xi,t = x

⋂
Ht = j)∑

t∈T I(Ht = j)
, (8)

for
∑
t∈T I(Ht = j) > 0, and the limit is 1/|X | otherwise.

Also, for any integer r > 0,

E
[(

lim
N→∞

P̂i,j(x)
)r]

= lim
N→∞

E
[(
P̂i,j(x)

)r]
, (9)

and, in particular,

E
[
limN→∞ P̂i,j(x)

]
= pi,j(x) +

(
1
|X | − pi,j(x)

)
(1− πj)T ,

VAR
[
limN→∞ P̂i,j(x)

]
= pi,j(x)(1− pi,j(x))

×
∑T
k=1

[(1−πj)
T−k−(1−πj)

T ]
k .

(10)
�

THEOREM 3: The estimator P̂i,j(x) in (4)-(5) is asymptoti-
cally consistent. Specifically, for x ∈ X , i ∈ N , j ∈ H,

lim
N→∞

lim
T→∞

P̂i,j(x) = lim
T→∞

lim
N→∞

P̂i,j(x) = pi,j(x).

�
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Fig. 1. Left plot: errN versus the number of agents N . Right plot: errT versus the time interval T . The curves are parametrized in α, see (11).

A. Discussion
Theorem 1 reveals that the limiting value of the estimator

for T → ∞ is deterministic: as T grows, the randomness
is lost. The RHS of (6) depends on N and its computation
becomes complicated for large N , because the expression
involves counting the number of occurrences of certain events,
over all the vectors of N (or N − 1) entries. A simplification
arises when all the agents share the same behavior, in the
sense that, for all j ∈ H, the PMFs {pi,j} are constant
with the agent index i ∈ N . In this case, the sums run not
over all the vectors x and xi, but over vectors of indices
[ñ1, . . . , ñ|X |] and [m̃1, . . . , m̃|X |]. Clearly, the assumption of
constant agents’ behavior does not simplify the inference prob-
lem (the estimator is designed without using this information),
but simplifies the presentation and interpretation of the results.
This is why in the computer experiments of Sect. IV we make
this assumption.

Consider now Theorem 2. We see that limN→∞ P̂i,j(x) is
a random variable and to gain some insight we refer to its
expected value E[limN→∞ P̂i,j(x)]. Suppose |X | pi,j(x) ≥
1. Inspection of the first equation in (10) reveals that
such expected value is lower bounded by 1/|X | and up-
per bounded by pi,j(x); thus, on the average, the limiting
value underestimates the actual pi,j(x). The opposite is true
when |X | pi,j(x) ≤ 1, in which case we have pi,j(x) ≤
E[limN→∞ P̂i,j(x)] ≤ 1/|X |. In both cases, as T grows the
expected value E[limN→∞ P̂i,j(x)] converges monotonically
to pi,j(x), with a rate of convergence that is ruled by (1−πj)T .
The bias in the average value for small values of T is explained
by the definition of the counting estimator that is equal to
1/|X | when the denominator of (5) is zero, an event that
happens with non negligible probability when T is small.
It can be also shown that the variance of limN→∞ P̂i,j(x)
decreases with T , for large T .

Theorem 3 ensures that the deterministic number
limT→∞ P̂i,j(x) converges, as N → ∞, to the correct
value pi,j(x), and that the random variable limN→∞ P̂i,j(x)
also converges to pi,j(x) when T → ∞. Thus, the simple
counting estimator is strongly consistent: it converges almost
surely to the true value pi,j(x) in the asymptotic regime
where N and T go to infinity in an arbitrary order.

IV. NUMERICAL INVESTIGATIONS

To simplify the analysis and the presentation of the results,
in the computer experiments that follows we make the follow-
ing assumptions.
• We set X = H and Xi = {i}, namely the agents’ outputs

are decisions about the network status. Note that agents
are not biased: by assumption, P(Xi,t = j|Ht = j) is
strictly larger than P(Xi,t = k|Ht = j), k 6= j.

• All agents have the same behavior: ∀j ∈ H, we have
pi,j = pk,j for i, k ∈ N . As already pointed out, this is
not a simplification of the inference procedure, but only
a way to simplify the presentation of the results.

• We assume that π is the uniform PMF: no network status
is more likely than another.

Let us introduce two error terms:

errN =
∑
j∈H

πj max
x∈X

∣∣∣ lim
T→∞

P̂i,j(x)− pi,j(x)
∣∣∣,

errT = E

∑
j∈H

πj max
x∈X

∣∣∣ lim
N→∞

P̂i,j(x)− pi,j(x)
∣∣∣
.

The former, a function of N , quantifies the difference between
the true PMF pi,j and the limiting expression limT→∞ P̂i,j(x)
(see Theorem 1). The latter, a function of T , is a con-
cise measure of the distance between the actual pi,j and
limN→∞ P̂i,j(x), computed in Theorem 2. The definition of
errT includes a statistical average, which is replaced by the
arithmetic mean of the results of 103 Monte Carlo runs in the
computer experiments.

Finally, we define

errT,N = E

∑
j∈H

πj max
x∈X

∣∣∣P̂i,j(x)− pi,j(x)∣∣∣
 ,

which provides a measure of how far is the estimated PMF
P̂i,j from the target pi,j .

Consider the case |H| = |X | = 3, and the following three
conditional PMFs characterizing the agents’ behaviors:

pi,1 = [α, (1− α)/2, (1− α)/2] ,
pi,2 = [(1− α)/2, α, (1− α)/2] ,
pi,3 = [(1− α)/2, (1− α)/2, α] .

(11)
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Fig. 2. The error errT,N versus T and N for α = 0.4 (left) and α = 0.6 (right).

We assume α > 1/3, in order to comply with the assumption
of agents’ unbiasedness.

The left plot in Fig. 1 shows the error errN versus the
number of agents N , for five different values of α. Similarly,
the right plot in Fig. 1 shows the error errT , versus T , for five
different values of α.

Suppose T be sufficiently large and consider hence the left
plot. For α close to 1/3 there is a performance improvement
by increasing N , but the error decreases very slowly: accurate
agents’ profiling is a challenging task. For larger values of α
the agents’ behavior under the different states of the network
is markedly different, and the profiling task becomes simpler.
Indeed, with very spiky PMFs, as those corresponding to α =
0.9, the error decreases quite fast with increasing N .

Suppose now N be large so that the asymptotic regime of
N → ∞ comes into play. The right plot of Fig. 1 reveals
that there is little difference in the error for different values of
α, and only for α = 0.9 the error is appreciably lower. The
lesson learned by the combined analysis of the plots in Fig. 1
is that neither regime, N →∞ or T →∞, can be considered
better performing than the other, and a case by case analysis
is needed.

Let us now analyze the estimation performance when both
N and T are finite. In Fig. 2, we use 103 Monte Carlo runs to
compute different realizations of the estimator P̂i,j(x), which
are then averaged to compute errT,N . These values are shown
as functions of both T and N , for two different values of α. As
one expects, the estimation performance improves for larger
values of α. This figure allows the network analyzer to set the
proper values of T and N (if the number of agents can be
controlled by the analyzer) to obtain a desired performance.

While it is obvious that the numbers shown in this section
are valid only for the simple example (11), such example well
highlights the general behavior of the estimator with respect
to the main system parameters T , N , and to the smoothness
or spiky character of the underlying PMFs.

Finally, we reiterate that the problem model addressed
in this paper –originally inspired by [1], [2] and therein
references– is similar to that of [3] with the important dif-
ference that the latter adopts a parametric model. For this
reason a direct comparison with [3] in terms of estimation

performance is inappropriate, but it can be certainly said that
our counting approach is computationally simpler than the
iterative procedures considered in [1]–[3].

V. SUMMARY

Nowadays, there is a growing interest in classifying the
users of social networks for commercial, security, or system
optimization purposes. We assume that N agents of a network
take some course of action (e.g., make choices) independently
of each other, but depending on the status of the system
at that time. By observing for a period T the N agents’
outputs, a network analyzer is asked to profile all the agents,
meaning that the probability of making any possible choice
under any possible network status should be estimated. The
problem is challenging when no a-priori knowledge of the
status of the network nor of the agents’ inclinations is available
and, perhaps even more important, when the network analyzer
operates under a real-time “big data” paradigm, with severe
constraints on the computational complexity of the estimation
procedure. A desirable feature, also, is the possibility of
implementing the estimation algorithm in a sequential fashion.

In these situations, the design choice is biased towards very
simple nonparametric estimators. Thus, our main motivation
was to investigate the performance of a simple counting
estimator, and the main results of our analysis are the proof
of the asymptotic consistence of the estimator when both N
and T diverges, and the derivation of analytical expressions
for the two regimes of N → ∞ and T → ∞. Computer
simulations are presented for performance assessments in the
finite regime.

APPENDIX A
SKETCH OF THE PROOFS

The complete proofs are given in an extended journal
version of this work [23]. Here we only provide the main
arguments. The limits of random quantities are in the almost
sure sense.
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Proof of Theorem 1

For T → ∞, it is not difficult to see that
∑
t∈T I(Ĥt =

j)→∞, ∀j, and the strong law of large numbers then implies

P̂i,j(x)→
P(Xi,t = x

⋂
Ĥt = j)

P(Ĥt = j)
. (A.12)

The denominator is obtained by writing P(Ĥt = j) =∑
h πhP(Ĥt = j | Ht = h) and exploiting the definition

of Ĥt in (4), which yields

P(Ĥt = j) =
∑
h∈H

πh
∑

x:

{
nj≥nl

j 6=l

}
qh(x)∑
l∈H δnj ,nl

. (A.13)

Using the chain rule for probabilities the numerator of (A.12)
can be rewritten as

∑
h∈H P(Ĥt = j|Xi,t = x,Ht =

h)pi,h(x)πh. Now, conditioning to {Ht = h} makes the
random variables {Xk,t}k∈N independent of each other, and
conditioning to {Xi,t = x} allows to count the occurrences of
the different sets Xj only for the remaining N − 1 variables
{Xk,t}k∈N\i in the vector xi. This yields P(Ĥt = j|Xi,t =
x,Ht = h) in the form∑

xi:

{
mj,x≥ml,x

j 6=l

}
qh(xi)∑

l∈H δmj,x,ml,x

,

and (6) follows. Expressions (7) are obvious.

Proof of Theorem 2

The proof of the first claim is straightforward. The RHS
of (8) is nothing but the RHS of (5) with Ĥt replaced by Ht,
and we only need to show that the former can be replaced
by the latter, which intuitively follows by observing that
N → ∞ allows for exact estimation of the network status
for any time instant t. Then, since 0 ≤ P̂i,j(x) ≤ 1 a.s.,
these random variables are bounded, and a.s. convergence
implies convergence of the moments [24], yielding (9). The
computation of the average value and of the variance in (10)
is omitted.

Proof of Theorem 3

It is not difficult to show that P̂i,j(x) converges to P(Xi,t =
x | Ĥt = j) when T →∞, yielding,

lim
N→∞

lim
T→∞

P̂i,j(x)

= lim
N→∞

P
(
Xi,t = x | Ĥt = j

)
= lim

N→∞

∑
h∈H P

(
Ĥt = j | Xi,t = x,Ht = h

)
pi,h(x)πh∑

h∈H P
(
Ĥt = j | Ht = h

)
πh

where the last equality follows by an application of the chain
rule for probabilities. Now conditioning on both the events
{Ht = h} and {Xi,t = x}, one can easily prove that
Ĥt → h when N → ∞, which implies limN→∞ P(Ĥt =
j | Xi,t = x,Ht = h) = δj,h. The same result holds for the
denominator of the above limit. Plugging these results into the

above expression gives limN→∞ limT→∞ P̂i,j(x) = pi,j(x).
The limit the other way around follows by letting T → ∞
in (8) and observing that

∑
t∈T I(Ht = j)→∞.
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