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Abstract—In room acoustics, the under-modelled blind system
identification (BSI) problem arises when the identified room
impulse response (RIR) is shorter than the real one. Conventional
BSI methods can perform poorly under these circumstances.
In this paper, we propose an algorithm for multichannel BSI
in under-modelled situations. Instead of minimizing the cross-
relation error, a new optimization criterion is formulated, which
is based on maximizing a cross-correlation criterion. We show
that under the statistical model of reverberant signals, the cross-
correlation based criterion helps to reduce the adverse effects
of system under-modelling on BSI. Moreover, the optimization
problem is regularized by including a sparsity term in the
cost function. The optimization problem is finally solved based
on the split Bregman method in the least-mean-square (LMS)
framework. Experimental results show that the proposed method
can perform effectively in the under-modelled situations in which
conventional methods fail.

I. INTRODUCTION

By using multiple microphones, the room impulse responses

(RIRs) from a sound source to the microphones can be

estimated using multichannel blind system identification (BSI)

methods. Traditional methods aim to estimate the entire RIR,

but many applications require only the early part of the

RIR, which consists of the direct propagation path and a few

early reflections [1]. These applications include the acoustic

RAKE receiver for speech dereverberation [2], sound source

localization [3, 4], and room geometry inference [5, 6]. If

only the early RIR is identified using under-modelled BSI,

the resulting estimation is inaccurate in general.

Conventional multichannel BSI methods are formulated non-

adaptively [7, 8] or adaptively [4, 9–13], and adaptive methods

are more popular due to the computational efficiency and

better performance. Widely used adaptive algorithms include

multichannel LMS (MCLMS) algorithm [9, 10], multichannel

Newton (MCN) algorithm [9], multichannel frequency-domain

LMS (MCFLMS) algorithm [11] and normalized MCFLMS

(NMCFLMS) algorithm [11]. In addition to the general pur-

pose BSI algorithms, others have been proposed which utilize

the a priori characteristics of RIRs. For instance, the sparsity

of (early) RIRs has been used to improve the convergence

speed [12] and the robustness to noise [4, 13].

The fundamental rule for conventional adaptive multichan-

nel BSI methods is the cross-relation (CR) property [8, 9],

which will be introduced in Section III in this paper, and RIRs

of different channels can be estimated based on minimizing

the CR error between microphone pairs. However, when

the system is under-modelled, there is always a mismatch

between the RIR used for computing the CR error and the

true RIR that would make the CR property valid. In such

cases, conventional BSI methods may fail to work reliably.

One method of early RIR estimation is to identify the entire

RIR and then extract the early part by truncation. However, as

this strategy introduces more irrelevant parameters to estimate,

it increases the computational complexity and noise sensitivity,

and decreases the convergence rate. Moreover, setting the RIR

length requires knowledge of the true channel length which is

normally unknown and difficult to estimate in practice.

In this paper, we propose an algorithm for under-modelled

multichannel BSI. A new optimization problem is formulated,

which is based on maximizing a cross-correlation criterion.

With the statistical reverberant signal model, we show that

the negative effect caused by the system under-modelling can

be alleviated using our approach. Furthermore, as the early

RIR only contains the direct path and sparse early reflections,

a sparsity term is further integrated into the optimization

objective. We finally derive an adaptive LMS algorithm, which

is based on the split Bregman method [14], to solve the

optimization problem. The experiments conducted in system

under-modelling cases show that the proposed algorithm can

perform reliably in cases in which conventional methods fail..

II. SIGNAL MODEL

In a reverberant environment with a single sound source

and an M -element microphone array, we have the following

time-domain equation in matrix form for the i-th microphone

at time index n:

xn
i = Hi · s

n + vn
i , i = 1, 2, ...,M, (1)

where xn
i = [xn

i xn−1
i . . . xn−K+1

i ]T is the K × 1 signal

vector, with K as the length of the final identified RIR. The

additive noise vector vn
i is defined in a similar way to xn

i . Hi

is a K × (K + L − 1) Toeplitz matrix constructed from the

true L-tap RIR, hi = [hi,0 hi,1 . . . hi,L−1]
T, as

Hi =











hi,0 hi,1 · · · hi,L−1 0 · · · 0
0 hi,0 · · · hi,L−2 hi,L−1 · · · 0
...

. . .
. . .

...
. . .

. . .
...

0 · · · 0 hi,0 hi,1 · · · hi,L−1











.
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In addition, sn = [sn sn−1 . . . sn−K−L+1]T is a (K + L −
1)× 1 vector of the source signal.

In this paper, we are interested in only identifying the early

RIR, which mainly contains the direct path and early reflection-

s, thus K < L. Let us rewrite hi as hi = [hT
i,e hT

i,l]
T, where

hi,e = [hi,0 · · · hi,K−1]
T, and hi,l = [hi,K · · · hi,L−1]

T,

which correspond to the early RIR and late RIR components

respectively. Then we have Hi = Hi,e + Hi,l, where Hi,e

and Hi,l are two K × (K + L − 1) matrices constructed by

using [hT
i,e 0T

(L−K)×1]
T and [0T

K×1 hT
i,l]

T, having the same

structure as Hi. In the absence of vn
i , the clean reverberant

signal in (1) can be further expressed as:

xn
i = Hi,es

n +Hi,ls
n = xn

i,e + xn
i,l, (2)

where the reverberant signal is decomposed into the early

reverberation xn
i,e and the late reverberation xn

i,l. It can be

assumed that xn
i,e and xn

j,l for i, j = 1, ...,M are uncorrelated

[15]. Spatially, the late reverberation can be modelled as the

diffuse sound field [15], and the pairwise cross-correlation

is usually much smaller than the autocorrelations unless the

microphones are very close in space (here we ignore this case

as it does not provide enough spatial diversity for BSI).

III. PERFORMANCE ANALYSIS OF CR ERROR BASED BSI

In this section, we first briefly introduce the concept of

the traditional CR error based methods in the time domain,

and then discuss the problem encountered when the system is

under-modelled. We note that the conclusions drawn in this

section also apply to the frequency-domain methods.

In the absence of noise vn
i , the following CR property may

be deduced from (1) [8, 9]:

hT
i x

n
j = hT

j x
n
i , i, j = 1, 2, ...,M, i 6= j. (3)

Given the K × 1 vector gi = [gi,0 gi,1 . . . gi,K−1]
T as

one estimate of the i-th channel impulse response, and letting

g = [gT
1 gT

2 . . .gT
M ], then:

1) Fully-modelled BSI: For BSI of the entire RIR, i.e., K =
L, define the CR error as

εnij = x̃n
ij − x̃n

ji, (4)

where

x̃n
ij = gT

i x
n
j , i, j = 1, 2, ...,M, (5)

is called the cross-filtered signal.

Next, define χ(g) as the summation of mean squared error

(MSE) values E{[εnij ]
2} for all microphone pairs [9]:

χ(g) =

M−1
∑

i=1

M
∑

j=i+1

E{[εnij ]
2}. (6)

where E{·} denotes expectation.

According to (3), if gi = αhi for i = 1, 2, ...,M , where α
is an arbitrary non-zero scale factor, then χ(g) = 0. Thus the

RIRs can be estimated by finding the RIRs which minimize the

χ(g) based criterion, under the unit-norm constraint ||g||22 = 1.

This constraint is used to avoid the trivial solution with all

RIRs equal to zero.

2) Under-modelled BSI: Now we analyse the case when the

RIR is under-modelled, i.e., K < L. Given the RIR estimates,

the cross-filtered signal in (5) becomes:

x̃n
ij = gT

i x
n
j,e + gT

i x
n
j,l = x̃n

ij,e + x̃n
ij,l, (7)

thus x̃n
ij is decomposed into x̃n

ij,e and x̃n
ij,l which we call

respectively the early and late cross-filtered signals.

It can be easily verified that if gi = αhi,e for i = 1, 2, ...,M ,

where α is a non-zero scale factor, then x̃n
ij,e = x̃n

ji,e, while

x̃n
ij,l 6= x̃n

ji,l. Thus in the under-modelled case, the CR property

can hold only for the early cross-filtered signals, and the late

cross-filtered signals act as unwanted noise.

Under the assumption in Section II, we have:

E{x̃n
ij,e · x̃

n
ij,l} = gT

i E{x
n
j,e[x

n
j,l]

T}gi = 0,

E{x̃n
ij,e · x̃

n
ji,l} = gT

i E{x
n
j,e[x

n
i,l]

T}gj = 0. (8)

Substituting (7) into (4), according to (8), E{[εnij ]
2} in (6) is

given by:

E{[εnij ]
2} = E{[x̃n

ij,e − x̃n
ji,e]

2}+ E{[x̃n
ij,l − x̃n

ji,l]
2}. (9)

In (9), the MSE is biased by the term E{[x̃n
ij,l − x̃n

ji,l]
2},

which is also related gi and gj according to (7). With the

diffuse late reverberation model [15], it is reasonable to assume

that the cross-correlation of late cross-filtered signals is much

smaller than the autocorrelations. Thus the bias term is domi-

nated by the summation E{[x̃n
ij,l]

2}+E{[x̃n
ji,l]

2}. If the energy

of the un-modelled part is strong, the large autocorrelation of

late cross-filtered signals will result in a large MSE bias, which

will mean that the optimal solution cannot approximate the

true early RIR. On the other hand, when the estimated RIRs

approach the true values, as E{[x̃n
ij,e − x̃n

ji,e]
2} → 0, the bias

term will become more dominant in the optimization criterion

so that the CR error based methods will not converge to the

truncated true RIRs.

IV. PROPOSED METHOD

A. Cross-Correlation of Cross-Filtered Signals

The MSE values, E{[εnij ]
2}, in (6) can be regarded as a

measure of the similarity of the cross-filtered signals, x̃n
ij and

x̃n
ji. Thus the conventional CR error based BSI algorithms

can be regarded as finding the g that maximizes the similarity

between all the pairs of cross-filtered signals. However when

the system is under-modelled, the MSE does not reflect the

similarity of the early components of the cross-filtered signals.

One way to improve the performance is to find a similarity

measure which is robust to the system under-modelling. In this

subsection, similar to Section III, the cross-correlation between

a pair of cross-filtered signals will be analysed.

The cross-correlation between a pair of cross-filtered signals

is defined as:

γij = E{x̃n
ij · x̃

n
ji}. (10)

Obviously, when the RIR is fully-modeled, as long as

gi = αhT
i for i = 1, 2, ...,M , then x̃n

ij = x̃n
ji, and the

similarity between the signals reaches the maximum. If we
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take the cross-correlation as the similarity measure, the RIRs

can be estimated based on maximizing γij under the unit-norm

constraint ||g||22 = 1 . The unit-norm constraint is needed to

avoid the estimated RIR coefficients tending towards infinity.

In the system under-modelling case, since the CR property

is only valid on the early cross-filtered signals, we can only

rely on the cross-correlation between these signals for BSI.

Substituting (7) into (10), according to (8), we have

γij = E{[x̃n
ij,e + x̃n

ij,l][x̃
n
ji,e + x̃n

ji,l]}

= E{[x̃n
ij,e · x̃

n
ji,e]}+ E{[x̃n

ij,l · x̃
n
ji,l]}. (11)

We can see that the cross-correlation based criterion is still

biased by E{[x̃n
ij,l · x̃

n
ji,l]}. However, as the autocorrelations

of late cross-filtered signals have been totally removed in (11),

and the remaining cross-correlation bias term is much smaller

than autocorrelations, compared with the bias in (9), the bias

in (11) is greatly reduced. Moreover, in contrast with the CR

error based criterion, the more the estimated RIRs approach

the true values, the higher the cross-correlation between early

cross-filtered signals will be. This makes the bias term less

dominant in the overall optimization criterion. Therefore, in

the cross-correlation between the cross-filtered signals, the

adverse effect of system under-modelling has been alleviated

greatly.

B. Optimization Problem Formulation

Inspired by the analysis in the above, in this subsection, a

new optimization problem is formulated, which is based on

maximizing the cross-correlation of the cross-filtered signals.

Moreover, as the early RIR generally consists of the direct

path and sparse early reflections, an l1-norm term is used to

promote sparsity in the estimated system.

With (5), the cross-correlation in (10) becomes

γij = gT
i E{x

n
j [x

n
i ]

T}gj. (12)

Similarly to the CR error based BSI in [9], with (12), by using

all microphone pairs, we first define

Υn(g) =

M
∑

i=1

M
∑

j=1,j 6=i

gT
i x

n
j [x

n
i ]

Tgj = gTRng, (13)

where Rn is a MK ×MK matrix having the form

Rn =











0K×K Rn
21 · · · Rn

M1

Rn
12 0K×K · · · Rn

M2
...

...
. . .

...

Rn
1M Rn

2M · · · 0K×K











(14)

with Rn
ij = xn

i [x
n
j ]

T. By enforcing the unit-norm constraint

on g at all times, we then define the cross-correlation based

cost function as

Jn(g) = −
Υn(g)

||g||22
. (15)

We expect to find a unit-norm solution ĝ which has low

sparsity and maximizes the cross-correlation of the cross-

filtered signals. Maximizing the cross-correlation of the cross-

filtered signals under the unit-norm constraint is equivalent to

minimizing the expectation of Jn(g). Let J̄(g) = E{Jn(g)},

and taking l1-norm of g as the sparsity measure, finally the

optimization problem is formulated as:

ĝ = argmin
g

{J̄(g) + ρ|g|1}, s.t. ||g||22 = 1. (16)

where ρ is a regularization parameter.

C. Adaptive LMS Updating

An LMS-type algorithm is derived here to solve the opti-

mization problem (16) in an iterative manner.

Since |g|1 is included in the minimization,, the problem

in (16) cannot be directly solved in the LMS framework. The

cost function in (16) is a combination of the convex differential

term and the l1-norm term, which is similar to the optimization

problem in [4]. According to [4], if first omitting the unit-norm

constraint, (16) can be reformulated into an unconstrained

optimization problem using a quadratic penalty function as:

(ĝ, d̂) = argmin
g,d

{J̄(g) + ρ|d|1 + λ||d− g||22}, (17)

where d is a (KM) × 1 auxiliary variable vector, d̂ is the

estimate of d, and λ is a Lagrange multiplier.

Then the split Bregman iteration method [14] can be applied

to (17), which iteratively solves the problem as

(ĝ, d̂)k+1 = argmin
g,d

{J̄(g) + ρ|d|1 + λ||d− g − bk||22},

(18a)

bk+1 = bk + ĝk+1 − d̂k+1. (18b)

where b is a (KM) × 1 Bregman variable vector, and k
denotes the iteration index. The problem of (18a) can be finally

transformed into two sub-problems which can be solved with

respect to g and d, respectively [4]:

ĝk+1 = argmin
g

{J̄(g) + λ||d̂k − g− bk||22}, s.t. ||g||22 = 1

(19a)

d̂k+1 = argmin
d

{ρ|d|1 + λ||d− ĝk+1 − bk||22}. (19b)

1) Solving (19a): ĝ is updated at each new sample, there-

fore, the iteration index k equals the time index n.

In the LMS framework, the expectation J̄(g) is replaced by

the instantaneous value, Jn(g). First ignoring the unit-norm

constraint, by using the gradient descent method, we have

ĝn+1 = ĝn − µ
∂Jn(g)

∂g
− µλ

∂||d̂n − g− bn||22
∂g

= ĝn + 2µ
Rnĝn + Jn(ĝn)ĝn

||ĝn||22
− 2µλ(ĝn + bn − d̂n),

(20)

where µ is the step-size. Then enforcing the unit-norm con-

straint by normalization after each update, we have the final

form:

ĝn+1

=
ĝn + 2µ[Rnĝn −Υn(ĝn) · ĝn − λ(ĝn + bn − d̂n)]

||ĝn + 2µ[Rnĝn −Υn(ĝn) · ĝn − λ(ĝn + bn − d̂n)||22
.

(21)
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2) Solving (19b): Similar to [4], in order to reduce the

computational complexity, d̂ is updated only once for every P
samples. If (n+1) mod P = 0, according to [14], the optimal

solution of d̂ can be obtained by updating each element as

d̂n+1
i = sign(ĝn+1

i + bn
i ) ·max{|ĝn+1

i + bn
i | −

ρ

2λ
, 0},

(22)

where ui denotes the i-th element of the vector u. If (n+ 1)
mod P 6= 0, d̂ keeps unchanged, then d̂n+1

i = d̂n
i .

Once d̂ is updated, the Bregman variable vector b is also

updated in accordance with d̂ according to (18b).

V. EXPERIMENT

In this section, the performance of the proposed algorithm

is evaluated in the simulated room environment. Four CR

error based algorithms, including the widely used time-domain

MCLMS algorithm [9], frequency-domain NMCFLMS algo-

rithm [11], as well as the recently proposed sparse MCLMS

(SMCLMS) algorithm and sparse NMCFLMS (SNMCFLMS)

algorithm [4], are used for comparison.

A rectangular room with size 5 m × 6 m × 3 m is

simulated using the image-source method [16]. We use M = 2
microphones, with positions (2.4, 2.0, 1.6) m and (2.6, 2.0,

1.6) m respectively to capture the signal from the source. The

source is located at (2.05, 3.95, 1.67) m, a white Gaussian

noise of duration 10 s is used as the source signal, and the

sampling rate is 8 kHz. We set the reverberation time to be 300

ms, then simulate two RIRs from source to microphones, and

truncate the RIRs to be 128-taps long. The signals captured

by microphones are generated by convolving the source signal

with the truncated RIRs. Therefore, in the experiment, the

length of the target RIR in the signal model (1) is L = 128.

We evaluate the BSI performances with different values of

the identified RIR length K , which decreases from L = 128
to L/4 = 32 with step size L/4 = 32. Thus totally one fully

modelled case and three under-modelled cases are tested. In

all experiments, we empirically choose the parameters of the

proposed method as: µ = 0.02, ρ = 4 ·10−4, λ = 0.5, P = 30.

The comparison results for channel 2 are illustrated in Fig.

1 to Fig. 4 (the results for channel 1 are similar and not shown

for brevity). For each algorithm, the normalized projection

misalignment (NPM) [17] is computed by comparing the

estimated RIR with the first K taps of the target RIR, and

a lower NPM indicates a better estimation result. We can

observe from Fig. 1 that, when the RIR is fully-modelled, all

the conventional methods can accurately estimate the target

RIR. However, the RIR estimated by proposed method has

larger errors in the late part. This can be mainly explained as

follows. According to Section IV-A, the effect of late RIR is

suppressed in the cross-correlation criterion. As a consequence,

compared with the conventional methods, the proposed method

becomes less sensitive to the error in the late RIR during the

filter update, and the fluctuations in the late RIR cannot be well

tracked. On the other hand, the sparsity regularization in (16)

also makes the algorithm unable to estimate the late RIR which
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Fig. 1. Comparison results for K = 128: (a) The target RIR, and estimated
RIRs by using (b) the proposed method, (c) MCLMS, (d) SMCLMS, (e)
NMCFLMS and (f) SNMCFLMS, respectively.
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Fig. 2. Comparison results for K = 96: (a) The target RIR, and estimated
RIRs by using (b) the proposed method, (c) MCLMS, (d) SMCLMS, (e)
NMCFLMS and (f) SNMCFLMS, respectively.

is actually not sparse. From Fig. 2 to Fig. 4, we can see that

the proposed algorithm’s under-modelled BSI is of comparable

accuracy to the fully-modelled case, whereas for the existing

algorithms, the BSI has failed in the under-modelled case.

Moreover, it is shown for the proposed algorithm that key

features of the early part of the estimated RIR are estimated

almost independent of K .

VI. CONCLUSION

In this paper, we have proposed a novel algorithm for under-

modelled multichannel BSI. A new optimization problem has

been formulated, based on maximizing the cross-correlation

of cross-filtered signals. By exploiting the sparse nature of

the early RIRs in real acoustic environments, sparsity is

additionally promoted in the optimization scheme. We solve

the optimization problem by using a LMS algorithm based

on the split Bregman method. By conducting experiments in

different system under-modelling cases, we have demonstrated

the effectiveness of the proposed method.
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Fig. 3. Comparison results for K = 64: (a) The target RIR, and estimated
RIRs by using (b) the proposed method, (c) MCLMS, (d) SMCLMS, (e)
NMCFLMS and (f) SNMCFLMS, respectively.
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Fig. 4. Comparison results for K = 32: (a) The target RIR, and estimated
RIRs by using (b) the proposed method, (c) MCLMS, (d) SMCLMS, (e)
NMCFLMS and (f) SNMCFLMS, respectively.
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