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ABSTRACT
Renormalized maximum likelihood (RNML) is a powerful
concept from information theory. We show how it can be used
to derive a criterion for selecting the order of vector autore-
gressive (VAR) processes. We prove that RNML criterion is
strongly consistent. We also demonstrate empirically its good
performance for examples of VAR which have been consid-
ered in recent literature because they possess a particular type
of sparsity. In our experiments, we pay a special attention to
models for which the inverse spectral density matrix (ISDM)
has a specific sparsity pattern. The interest on these models
is motivated by the relationship between sparse structure of
ISDM and the problem of inferring the conditional indepen-
dence graph for multivariate time series.

Index Terms— Renormalized maximum likelihood, vec-
tor autoregressive model, order selection, maximum entropy,
convex optimization

1. INTRODUCTION AND PRELIMINARIES

Problem formulation: In this study, we address the funda-
mental problem of estimating the order of a vector autore-
gressive (VAR) process.

Let y1, . . . ,yT be a K-dimensional (K > 1) time series
generated by a stationary and stable VAR process of order p◦.
We assume that the spacing of observation times is constant
and yt = [y1 t, . . . , yK t]

′, for t = 1, T . The symbol [·]′ de-
notes transposition. The well-known difference equation of
the process is [1]:

yt = A1yt−1 + · · ·+Ap◦yt−p◦ + ut, t = 1, 2, . . . (1)

where A1, . . . ,Ap◦ are matrix coefficients of sizeK×K and
ut = [u1t, . . . , uKt]

′ is a sequence of independently and iden-
tically distributed random K-vectors. In our derivations, we
need the supplementary hypothesis that the vectors {ut}Tt=1
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are drawn from a K-variate Gaussian distribution with zero
mean vector and covariance matrix Σ ≻ 0. Additionally, the
vectors {yt}0t=1−p◦ are assumed to be constant.
Motivation of the work: In a recent series of papers (see [2,
3, 4] and the references therein), various information theoretic
criteria (ITC) have been used to select the order of VAR-
models for which a sparsity pattern is assumed either for the
matrix B = [A1, . . . ,Ap◦ ]

′ or for the inverse spectral density
matrix (ISDM) of the process. To make clear the last point,
we denote the spectral density matrix of VAR(p◦)-process in
(1) by S(ω), where ω ∈ (−π, π]. Its eigenvalues are bounded
and bounded away from zero, uniformly for all frequencies
in (−π, π]. It follows that the ISDM S−1(ω) exists for ω ∈
(−π, π] and has the following expression [2]:

S−1(ω) = AH(ω)Σ−1A(ω) =

p◦∑
m=−p◦

Qme
−jωm, (2)

where j =
√
−1 and (·)H is the operator for conjugate trans-

pose. We define A0 = −I and A(ω) = −
∑p◦

m=0 Ame
−jωm.

We make the convention that I stands for the identity ma-
trix of appropriate size. For m ≥ 0, we have that Qm =∑p◦−m
i=0 A′

iΣ
−1Ai+m and Q−m = Q′

m. The sparse struc-
ture of ISDM is especially important in connection with the
problem of inferring the conditional independence graph for
the observed time series [5].

Interestingly enough, the aforementioned studies do not
assume that only very few of the entries of the considered
matrices are non-zero. As the high sparsity is not included
in the set of assumptions, the authors of these works employ
“classical” ITC: SBC - Schwarz’s Bayesian Criterion [6],
AIC - Akaike Information Criterion [7], AICc - “corrected”
AIC [8], KIC - Kullback Information Criterion [9], KICc -
“corrected” KIC [10].

In [4], a nonparametric estimator is used “to guess” the
entries of S−1(ω) which are likely to be non-zero. This leads
to a list of competing models, VAR(p,SP), where p does not
exceed a pre-defined pmax-order and SP denotes the sparsity
pattern of S−1(ω). SP is further converted into zeros of B,
then each candidate model is fitted to the data and the win-
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ner is selected by using SBC. The results are refined in the
second stage of the procedure, where SBC is applied again.
The approach from [2] is more computationally intensive be-
cause a VAR-model is fitted to the data for each pair (p, SP)
when all possible SP’s are considered and not only a short list
of candidates like in [4]. The major contribution of [2] con-
sists in recasting the model fitting as a convex optimization
problem. In [3], selection of VAR-order is discussed in the
context of analysis of fMRI data for which the ratio T/K is
small, but not smaller than p+ 1.
Relation to prior work: When a VAR(p)-model is fitted to
the data Y = [y1, . . . ,yT ]

′, the normalized maximum likeli-
hood (NML) equals the negative logarithm of [11, 12]

f̂(Y; p) =
f
(
Y; B̂(Y), Σ̂(Y)

)
Cp

. (3)

In our calculations, we use only natural logarithms and denote
them by log(·). In (3), the numerator is the maximum value
of the likelihood function, given the measurements Y. B̂(Y)

and Σ̂(Y) are the maximum likelihood (ML) estimates of the
parameters of the model. For the denominator, we have:

Cp =

∫
f
(
Y; B̂(Y), Σ̂(Y)

)
dY, (4)

where the domain of integration is the entire space of obser-
vations. Since the integral above diverges, we apply the same
type of constraint as the one proposed in [11]. This leads to
a finite result which depends on some hyper-parameters. Be-
cause we do not want to choose subjectively the values of the
hyper-parameters, we follow the recommendations from [11]
and perform a second normalization step. The resulting for-
mula is named RNML(Y; p).

According to the best of our knowledge, the expression of
RNML for VAR-models was not obtained so far. The very
first attempt at estimating the order of univariate AR models
by RNML is the one from [13]. The approach from [13] was
further extended in [14], where the focus is still on the uni-
variate case. We note in passing that, the method employed in
[14] for evaluating the criterion does not allow the use of the
second normalization step. More interestingly, the work of
Schmidt and Makalic relies on the re-parametrization of the
AR model by partial autocorrelations (PARCOR).

The univariate PARCOR function was extended to vector
time series by introducing (i) the partial autoregression ma-
trix function, (ii) the partial lag autocorrelation matrix func-
tion and (iii) the partial autocorrelation matrix function (see
[15, Section 16.5] for a tutorial review). The last one is best
known in the signal processing community for its use in the
normalized Whittle-Wiggins-Robinson algorithm [16]. How-
ever, none of these functions enables the calculation of the
integral in (4).

In order to overcome the difficulties, we recast VAR in
the form of a linear regression model, which means that the

random vectors {yt}T−1
t=1 are treated as fixed predictors. This

technique is widely used in time series analysis (see, for ex-
ample, [1, 3, 17]). We are encouraged to apply it by the exper-
imental results reported in [18] which show, for the univariate
case, that the RNML criterion devised for variable selection
in linear regression works properly when is employed to esti-
mate the order of autoregressions.

In our derivations, we will use some techniques from [19],
which appears to be the only work that considers the problem
of RNML-computation for the case when the measurements
are vector-valued and not scalar-valued. However, their re-
sults for multidimensional data are confined to Gaussian mix-
ture model.
Significance of the paper: (i) Derivation of RNML-formula
(see Section 2); (ii) Theoretical analysis of the new criterion
which shows its asymptotic equivalence with SBC. As part of
this analysis we find an upper bound for the penalty term of
RNML which depends on the actual measurements and not
only on the sample size and the number of parameters of the
model. The partial autocorrelation matrix function is instru-
mental in proving this result (see Section 2); (iii) Numerical
examples for demonstrating the performance of RNML (see
Section 3).
Note: Because of the limited space, some of the results are
presented in the supplemental material [20].

2. RNML CRITERION

Main formula: To fix the ideas, we assume that a VAR(p)-
model with order p > 0 is fitted to the data Y. Our main
result is the following.

Proposition 1. Under the hypotheses that T ≥ K(p+1) and
the vectors {ut}Tt=1 are Gaussian distributed, the expression
of the RNML-criterion is

RNML(Y; p) = GOF +
3∑
i=1

PENi,

where

GOF = [(T −Kp−K + 1)/2] log |Σ̂p|
PEN1 = − log ΓK [(T −Kp)/2]
PEN2 = − log Γ[(K2p)/2]

PEN3 = [(K2p)/2] log tr
[
(Y′Y)/T − Σ̂p

]
. (5)

Here Γ[·] is Gamma function and ΓK [·] is the multivariate
Gamma function. The operators | · | and tr(·) stand for the
determinant and the trace, respectively. By Σ̂p we denote
the estimate of the error covariance matrix obtained when
VAR(p)-model is fitted to the measurements Y.

Proof is outlined in [20, Section 1]. The acronym GOF is
employed for the goodness-of-fit term, whereas PEN1, PEN2

and PEN3 are penalty terms.
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As in the case of other ITC, RNML(Y; p) is evaluated
for p = pmin, pmax and p̂ is chosen to be that particular order
which minimizes the criterion. We have assumed that pmin >
0, because this is typically the case for the problem addressed
in this work. For completeness, we investigate in [20, Section
2] how RNML-formula can be derived for p = 0 (see also
[12]).
Asymptotic behavior: This analysis aims to clarify the rela-
tionship between RNML and SBC, whose formula is [6]

SBC(Y; p) =
T

2
log |Σ̂p|+

K2p

2
log T.

We are interested in their relative behavior when T →∞.

Lemma 1. Assuming that T →∞, K is fixed and p does not
increase with T , we have: GOF =

[
T
2 log |Σ̂p|

]
[1− o(1)]

and PEN1 =
[
K2p
2 log T

]
[1− o(1)].

Proof is outlined in [20, Section 3].

Proposition 2. RNML and SBC reduce to the same formula
when T → ∞. Assuming that the measurements {yt}Tt=1

are outcomes from a stable and stationary VAR-process with
zero-mean vector and order p◦ > 0, RNML is a strongly
consistent estimator for the order of the process.

Proof. It is obvious that PEN2 becomes negligible with re-
spect to PEN1 as T →∞. We will show below (see Remark
1) that PEN3 is bounded when T → ∞. Then, Lemma 1
gives the stated relation between RNML and SBC. The con-
sistency property of RNML is hence the same as for SBC,
proved in [1, p. 150].

We now analyze PEN3, which is the most intriguing penalty
term because it does not depend only on the number of vari-
ables (K), sample size (T ), VAR-order (p), but also on the
measurements [see (5)]. We propose to find an upper bound
for PEN3 when T → ∞. For any integer h, let R(h) =
Cov(yt,yt−h) be the autocovariance matrix at lag h, for the
time series Y. According to [21, Section 3.3], the model of
the time series can be “approximated” by a VAR(p). For
convenience, we assume that both p and p◦ are from the set
{1, . . . , pmax}.

Remark 1. We make the convention that Σ0 = R(0). It
is known from [21, p. 75] that (Y′Y)/T converges to Σ0

almost surely as T → ∞. Similarly, for p > 0, Σ̂p → Σp
almost surely. Hence, asymptotically in T we have: PEN3 ≤
(K2p/2) log tr(Σ0). Note that the upper bound for PEN3

does not depend on T .

We show in the next proposition how the upper bound for
PEN3 can be further improved. More importantly, the proof
of the proposition reveals the relationship between PEN3 and
the partial autocorrelation matrix.

Proposition 3. When T → ∞, if RNML(Y; p) is evalu-
ated for a data matrix Y produced by a VAR(p◦)-model, then
the following inequality holds true: PEN3 ≤ Kp

2 log |Σp| +
K2p
2 logK+K2p

2 log
[
ϕ(Σ0)
ψ(p,p◦) − 1

]
, where ϕ(Σ0) =

tr(Σ0)

K|Σ0|1/K
and ψ(p, p◦) has the properties: (i) ψ(p, p◦) ∈ (0, 1) for all
p, p◦ ∈ {1, . . . , pmax}; (ii) ψ(p + 1, p◦) ≤ ψ(p, p◦) for p =
1, p◦ − 1; (iii) ψ(p, p◦) = ψ(p◦, p◦) for p = p◦ + 1, pmax.

Proof is presented in [20, Section 4].

Remark 2. From [20, Section 4], we have that ψ(p, p◦) =

(|Σp|/|Σ0|)1/K , which leads to the identity K2p
2 log tr(Σ0) =

Kp
2 log |Σp| + K2p

2 logK + K2p
2 log ϕ(Σ0)

ψ(p,p◦) . This demon-
strates that the upper bound for PEN3 in Proposition 3 is
sharper than the one in Remark 1.

3. EXPERIMENTAL RESULTS

We compare RNML with SBC, AIC, AICc, KIC, KICc and
FPE - Final Prediction Error criterion [22].

We simulate data according to a VAR-model for which
K = 5 and p◦ ∈ {1, 5, 10, 15}. As we are interested in the
sparsity of ISDM of the VAR-model, we define NSP = 9
sparsity patterns which are denoted {SPi}8i=0. After setting
SP0 = ∅ and (u, v) = (1, 2), we apply the following re-
cursions, for i = 0, 7: (i) SPi+1 ← SPi ∪ {(u, v)} and (ii) if
v < K, then (u, v)← (u, v+1), else (u, v)← (u+1, u+2).
Remark that SP0 ⊂ SP1 ⊂ · · · ⊂ SP8.

Inspired by [23, Example 2], we generate for each SP
in {SPi}8i=0 an ISDM with the property that the entries of
{Qm}p

◦

m=1 [see (2)] are zero in the positions corresponding
to SP, and all other entries are randomly drawn from the uni-
variate Gaussian distribution with mean 2×10−1 and variance
10−4. The matrix Q0 is similarly produced, except that inte-
ger multiples of the identity matrix are added to it until ISDM
is positive definite. Furthermore, we use spectral factoriza-
tion of ISDM (see [24, App.B.5]) for obtaining the matrix
polynomial ASP of order p◦. The covariance matrix ΣSP is
a byproduct of this procedure. We simulate Nr different K-
variate time series of length Tmax by using ASP and ΣSP in
(1).

In our settings, Nr = 100 and Tmax = 27000. Hence, for
each p◦-order, the number of simulated K-variate time series
is NSP ×Nr = 900. Each time series is used to estimate the
matrix coefficients and Σ̂p for p = 1, 20 by employing the
implementation of ARFIT algorithm [17], available at http:
//climate-dynamics.org/software/#arfit. The
order is selected by the seven ITC which were listed above.
Firstly a subset of measurements (Y = [y1, . . . ,yT ]

′) with
T = 600 is employed for VAR-order estimation and then the
value of T is increased as follows: (i) T ← T + 100 when
600 ≤ T ≤ 900 and (ii) T ← 3T when 1000 ≤ T ≤ 9000.
We count how many times each criterion selects the correct
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Fig. 1: Performance of various criteria in estimating the order of VAR-model.
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Fig. 2: Statistics for the maximum value of I-divergences
computed on the G-grid. For each ITC, we plot two error
bars, each of which represents mean plus minus standard de-
viation: The first error bar is for Imax, while the second one
is for IME

max. The sample size is T = 900 and the “true” order
is p◦ = 10.

order. The results are shown in [20, Fig. 1], from which we
excerpt here the case p◦ = 10 in Fig. 1.

For p◦ = 1, all seven criteria correctly estimate the order
of the model in all runs and for all sample sizes. However, the
ability of the criteria to correctly estimate the order changes
for higher orders. When p◦ = 5, FPE, RNML, AIC and
AICc yield the best estimates when T ≤ 900 by correctly
selecting the order in 70% to 100% of the cases, while KIC
and KICc are much weaker; SBC selects wrong orders in
all runs for which T ≤ 1000. When p◦ = 10 and T ≤
900, we can observe in Fig. 1 that SBC, KIC, and KICc
fail to estimate correctly the order. For these experimental
settings, RNML is ranked the best. It is remarkable that, for
p◦ = 10 and T ∈ {900, 1000}, RNML is the only ITC which
selects correctly the order in more than 50% of the cases. For
p◦ = 15, the performance of all ITC declines when T is
small. RNML is the only criterion which, at least for some

runs, selects the true order when T ≤ 900. This property is
well illustrated in [20, Fig. 1]. We can conclude that RNML
is superior to other criteria when p◦ is large.

After the order p̂ of the model is selected with an ITC,
the autocovariance matrices R̂(0), . . . , R̂(p̂) can be easily es-
timated from the data. Furthermore, an estimate of ISDM
can be obtained by solving a convex optimization problem
which maximizes the entropy rate subject to the following
constraints: (i) the spectral density matrix matches R̂(0), . . .,
R̂(p̂) and (ii) the sparsity pattern of ISDM is SP. For details,
we refer to [2]. Because we want to evaluate the impact of
model order selection on the accuracy of this estimation, we
assume that SP is known. More precisely, we generate data
as described above, but only for p◦ = 10. This time, we re-
duce the number of sample sizes by dropping T = 27000 and
the number of SP’s is also diminished because we do not con-
sider SP0. The number of runs is Nr = 100, which means
that the number of K-variate time series for each sample size
is (NSP − 1)×Nr = 800.

In order to clarify the notation, let us assume that S(ω)
and Ŝ(ω) are the matrix spectral densities for the “true” model
and the estimated model, respectively. Recall that the order
of the “true” model is p◦, while the order of the estimated
model is p̂. The maximum entropy estimate, ŜME(ω), corre-
sponds also to a model of order p̂ and has the property that
the sparsity of its ISDM is the same as the “true” SP. We
take Ngrid = 1024 and we evaluate S(ω), Ŝ(ω), ŜME(ω) for

ω ∈ G, where G =
{

0×π
Ngrid

, 1×π
Ngrid

, · · · , Ngrid×π
Ngrid

}
. In order

to investigate how far is S(ω) from Ŝ(ω), we calculate the
I-divergence between them by applying the general formula
for two positive-definite matrices F and G [25]: D(F||G) =
−(1/2)

[
log |FG−1|+ tr(I− FG−1)

]
.

Given that I(ω) is the I-divergence between S(ω) and
Ŝ(ω), we compute Imax = max

ω∈G
I(ω). Similarly, IME

max is

the maximum of the I-divergence between S(ω) and ŜME(ω)
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when ω ∈ G. Statistics concerning Imax and IME
max are plotted

in Fig. 2. Observe that RNML is the best among all crite-
ria because it minimizes the maximum for each of the two
I-divergences. This is true not only for T = 900, but for
all sample sizes we have considered in our experiment (see
[20, Fig. 2]). The outcome of this experiment is further ana-
lyzed by computing the multivariate Itakura-Saito divergence
[26, 27] between the “true” model and the estimated model.
The interested reader can find this analysis in [20, Section 5],
where other numerical examples are presented as well.

All experiments can be reproduced by using the Matlab
code which can be downloaded from https://www.stat.
auckland.ac.nz/˜cgiu216/PUBLICATIONS.htm.

4. FINAL REMARKS

In this paper, we introduced the RNML criterion for VAR-
order selection. In our theoretical analysis, we proved that
the criterion is strongly consistent. The results reported for
experiments with simulated data demonstrate its abilities in
estimating properly the order when the sample size is small
or moderate. It can be used as part of an algorithm which
firstly estimates the order and then identifies the sparsity pat-
tern of ISDM. This application will be further developed in a
separate work.
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