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Abstract—This paper presents a novel method for the discrim-
ination of ictal heart rate variability (HRV). Traditionally, the
analysis of the non-linear and non-stationary electrocardiogram
(ECG) signal is limited to the time-domain or frequency-domain.
This severely limits the quality of features that can be extracted
from the ECG signal. In this work, HRV extracted from ECG is
analyzed by combining the Matching-Pursuit (MP) and Wigner-
Ville Distribution (WVD) algorithms in order to obtain a high
quality time-frequency distribution of the HRYV signal and to
effectively extract meaningful HRV features representative of
seizure and non-seizure states. The proposed method is tested on
clinical patients and the results demonstrate effective discrimi-
nation between ictal HRV features and non-ictal HRV features.

I. INTRODUCTION

Epilepsy is a neurological disorder that is associated with
the random occurrence of seizures. During a seizure, the
brain endures a transient period of abnormal excessive neural
activity which, depending on the type of seizure, can force the
patient to endure involuntary alterations in behavior, move-
ment, sensation, or consciousness [1]. Some epileptic patients
are able to find relief from their disorder through the use of
anti-epileptic drugs or through brain surgery, in which case
the epileptogenic focus of the brain is removed [2]. However,
approximately 30% of epileptic patients are diagnosed with
refractory epilepsy where they do not respond to medication
and are not candidates for brain surgery.

Epileptic patients whose treatment options have failed are
forced to live with many difficulties such as injuries due to the
confusion and loss of muscle control that accompanies some
seizures, limited mobility and independence, and emotional
and physiological problems. In an attempt to increase the
quality-of-life of epileptic patients, much research has been
dedicated to developing a device that can detect the onset of
seizure episodes before they happen. Such a device is called
a seizure onset detector (SOD). SODs have many benefits.
For instance, SODs can be used as warning devices to alert
patients of imminent seizures so that the patient can take
precaution measures before the seizure attack happens, and
thus, prevent serious injuries to themselves and those around
them. In addition, SODs are gaining more attention as possible
seizure control devices. Such detectors can control seizures
by initiating anti-epileptic drugs or by selectively stimulating
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certain parts of the brain when an oncoming seizure is detected
[3]. In a hospital setting, such a device would be useful
in initiating time-sensitive clinical procedures necessary for
the investigation of various epileptic characteristics, such as
localizing a patient’s epileptogenic focus via ictal single-
photon emission computed tomography (SPECT) or functional
magnetic resonance imaging (fMRI) [4]. Seizure onset detec-
tion is particularly useful to neurologists who usually spend
hours analyzing patients” EEG records in an attempt to locate
seizure activity. In particular, they greatly reduce the volume
of data that must be analyzed.

The manifestation of epilepsy is a fairly complex procedure.
In order to gain more insight on how epilepsy develops,
doctors often monitor various biosignals of a patient for an-
swers. Electrical biosignals are the most common continuous-
time signals studied, and among the most common electrical
biosignal is the electrocardiogram (ECG), which represents
the recording of electrical activity of the heart. One variable
often analyzed when looking at ECG is heart rate variability
(HRV), which is defined as the change in the heart’s beat-
to-beat interval and is often used in the analysis of cardio-
vascular regulatory mechanisms. Recent advancements in the
analysis of HRV in epilepsy reveal that epileptic seizures are
accompanied by changes in various autonomic functions such
as heart rate (HR) and in the same time unravel causes for
sudden unexpected death in epileptic patients (SUDEP) [5],
[6]. Furthermore, the estimation of the HRV before, during,
and after a seizure provides an indication of the sum of
sympathetic and parasympathetic inputs to the heart. Recent
investigation points out that epilepsy is frequently associated
with ictal tachycardia (ITC) or bradycardia, which, in some
cases, precedes the onset of seizures [7]. A review of interictal
and ictal cardiac manifestation of epilepsy with focus on HR,
HRYV, and ECG changes is given in [7].

In [8], HRV is analyzed to differentiate ictal tachycardia
from exercise. HRV is analyzed using four methods consist-
ing of: (1) reciprocal high frequency power based on Fast
Fourier Transformation, (2) Cardiac Sympathetic Index (CSI),
(3) Modified CSI both based on Lorenz plot, and (4) heart
rate differential method. It was found that the modicfied
CSI was the most accurate method in the detection of ictal
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activity. A set of time- and frequency-domain features and
nonlinear parameters based on Poincare plots are extracted and
analyzed from the HRV of epileptic patients in [9]. The anal-
ysis concluded that ictal HRV parameters differ significantly
from baseline HRV. Lagged Poincare plots, autocorrelation,
and detrended fluctuation analysis are applied to HRV in
[10] in order to analyze the difference in HRV patterns
between diabetic and age-matched healthy control subjects.
The work in [11] analyzes HRV using Poincare plots and
recurrence quantification methods in order to differentiate
between normal and abnormal HRV. Biomedical signals are
characterized by non-linear time-varying properties making
them non-stationary from a statistical point-of-view. However,
the majority of analyses carried out on epileptic HRV exploit
time-domain or frequency-domain methods. The recent work
in [12] demonstrates that the combination of time-variant,
frequency-selective, linear and nonlinear analysis approaches
can be beneficially used for the analysis of HRV in epileptic
patients. The work in [5] demonstrated that signal-adaptive
approaches based on Matched Gabor Transform with nonlinear
bispectral analysis and Empirical Mode Decomposition with
time-variant nonlinear stability analysis show a noticeable dif-
ference between specific HRV ictal and non-ictal components.

One of the major shortcomings of existing work on ictal
HRV can be highlighted by analyzing the HRV signal itself.
HRV signals are nonlinear and non-stationary in nature allow-
ing the frequency content of the signal to vary with time. It
is well documented that this variation may be crucial in the
important tasks of detection [13]. However, current seizure
detectors have limited their analysis of HRV to the time
or frequency domains using linear and nonlinear methods.
This major limitation restricts the potential of ECG and HRV
signals in seizure detection, as well as decreases the quality
of features that can be extracted.

Time-frequency (TF) representations are able to localize the
signals energy in both time and frequency domain by mapping
a one-dimensional signal into a two-dimensional representa-
tion. Thus, in an attempt to enhance seizure detection via
HRV features, we propose a signal adaptive quadratic time-
frequency distribution approach in analyzing HRV based on
the combination of the Matching-Pursuit (MP) and Wigner-
Ville Distribution (WVD) algorithm. This method enables the
extraction of more meaningful features from HRV data, and
thus, improves the detection results.

The rest of the paper is outlined as follows. Section II dis-
cusses the clinical data that is used for performance evaluation
of the proposed analysis technique in this paper. Section III
describes the proposed ECG analysis and feature extraction
technique. Section IV, illustrates the proposed evaluation tech-
niques on a set of clinical patients. Finally, concluding remarks
are given in Section V.

II. CLINICAL DATA

The data used to evaluate the proposed HRV analysis tech-
nique in this paper is obtained from the EPILEPSIAE project
[14]. The data was recorded during pre-surgical epilepsy
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monitoring at the Epilepsy Center of the University Hospital of
Freiburg in Germany. Ten patients are included in the dataset
and each patient has between 98 to 280 continuous EEG
and ECG recordings and exhibits between 5 to 22 seizures.
The sampling rate of the signals is 256 samples per second
with 16-bit resolution. The international 10 — 20 system of
EEG electrode positions and nomenclature is used for these
recordings. All recordings have 19 EEG channels and one-lead
ECG recording.

Each seizure’s electrographic onset is marked by an expe-
rienced electroencephalographer and corresponds to the onset
of a rhythmic activity that is associated with a clinical seizure.
Each seizure’s clinical onset time is also recorded. The data
is segmented into one-hour-long records. Records that do not
contain a seizure are referred to as non-seizure records and
those that contain one or more seizures are referred to as
seizure records. Furthermore, the recordings are made in a
routine clinical environment, so non-seizure activity and arti-
facts such as head/body movement, chewing, blinking, early
stages of sleep, and electrode pops/movement are present. No
constraints regarding the types of seizure are imposed; the
data set contains complex partial (CP), simple partial (SP),
and secondarily generalized seizures (GS). No form of pre-
processing for artifact and noise removal has been performed
on the data. Table I summarizes the clinical data used in this
work.

TABLE I
SUMMARY OF CLINICAL DATA

Patient | Patient | Patient Type of Number of | Number of
Number Age Gender Seizure Recordings Seizures

1 36 Male CP 172 11

2 52 Female SP 281 8

3 36 Male SP 121 5

4 43 Female SP & CP 130 8

5 65 Male | SP, CP, & GS 138 8

6 26 Male SP 117 22

7 47 Male CP & GS 98 6

III. ECG SIGNAL PROCESSING

In this section, the set-up for the ECG analysis procedure,
shown in Fig. 1, is presented. In the first unit, HRV information
is extracted from the ECG signal. In the next two units, the
MP-WVD algorithm is applied to the HRV to obtain the
time/frequency distribution of the HRV. The last unit extracts
relevant features from the time/frequency distribution of the
HRYV signal to reveal information about seizure and non-
seizure states.

A. HRV Extraction

This section presents the different steps required to obtain
the HRV from raw ECG. The steps are illustrated in Fig. 2.

In the first step, the problem of baseline wander in the
ECG data is addressed. ECG baseline correction in this work
is done via a robust and computationally efficient iterative
algorithm termed Baseline Estimation and Denoising with
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Fig. 1. An illustration of the ECG signal analysis procedure
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Fig. 2. HRV extraction process.

Sparsity (BEADS) [15]. Next, a QRS detection algorithm is
implemented to detect QRS complexes and localize R waves.
The algorithm works by searching for local maxima that are
above a certain predefined threshold value. The threshold value
ensures that the R-peaks are detected instead of the P- and T-
wave maxima. Once an R-peak is detected, the algorithm waits
for a period of Ag seconds before searching for a consecutive
R-peak. The wait period is adopted to avoid misclassification
due to noise. The R peaks are taken as the location of the R
points. Next, the time duration between consecutive R-peaks
is used to represent the heart’s beat-to-beat interval, known as
the RR interval time series, RR:.

The next step in the HRV extraction stage is the removal
of outliers from the RR: data. Outliers may exist in the RRi
due to QRS missed detections, false detections ectopic beats,
or other random-like physiological disturbances. In general,
outliers are defined as values which are not within a specified
limited interval. In this work, outliers are defined as [16]

RRi(n) if RRi(n) < 1° quartile(RRi)—
interquartile_range(RRi) X n
or
O(n) = (1)
RRi(n) if RRi(n) > 3" quartile(RRi)+
interquartile_range( RRi) X 7,

where O is the outlier, 0 < n < length(RRi), and 7 is a
constant. For our data, 7 is chosen to be 7. Once the outliers
are identified, they are removed and the missing data is spline
interpolated.
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An instantaneous heart rate (IHR) signal is obtained by
taking the inverse of the RRi signal. The IHR signal is not
uniformly sampled. In the case of time-domain analysis, it is
not an issue; however, time-frequency analysis assumes the
signal to be uniformly sampled. Uniform sampling is carried
out through the method of linear interpolation to obtain a
new uniform sampling rate of 20 Hz. The resulting signal
constitutes the HRV signal.

B. MP-WVD Algorithm

This section outlines the methods used to generate a high-
quality TF distribution of the HRV signal.

The WVD is a powerful quadratic TF distribution algo-
rithm that satisfies several desirable mathematical properties;
namely, it is real valued, it preserves time and frequency
shift information contained in the signal of interest, it sat-
isfies the marginal properties, the frequency integral of the
WYVD corresponds to the signal’s instantaneous power, and
the instantaneous frequency can be estimated from the first
moment of the WVD [17]. Although the WVD has good
theoretical properties, its major drawback is that it can suffer
from interference terms between the components of a multi-
component signal. These interference terms oscillate in the
TF plane and indicate activity which does not exist, leading
to erroneous visual interpretation of a signal’s TF structure.
Variations of the WVD have been proposed in the literature to
reduce the effect of the interference terms, i.e., pseudo-WVD
and the smoothed-pseudo-WVD). However, these windowed
methods present a trade-off between TF resolution and cross-
term reduction and they only reduce the interference terms,
they do not eliminate them. Because interference terms in the
WYVD appear only in multi-component signals, we implement
an algorithm that decomposes the HRV signal into a sum of
mono-component signals. This decomposition can be carried
over by employing the MP algorithm.

The MP algorithm decomposes a signal into a sum of
atoms from a given dictionary. In this work, the Gabor atom
dictionary is used because Gabor atoms are mono-component
signals per definition. Therefore, the application of the WVD
on a signal that has been decomposed via MP with Gabor
atoms presents excellent time-frequency resolution and does
not yield any interference terms.

The Gabor atom can be expressed in terms of the modulated
Gaussian function g(t) = ¢=™ . The Gabor atom assumes the
expression [18]

g(t) = Ae=™(54) cos (w(t —u) +¢)), 2)

where s represents a scaling factor, w denotes the frequency
modulation, u stands for the translation factor, ¢ models the
phase, and A is a normalization factor such that ||g(¢)|| = 1.
The Gabor atom dictionary is denoted by D and can be written
as:

D =[g1(t),92(¢), - gnm ()], (3)

where M denotes the number of atoms in the dictionary. The
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MP decomposition of the HRV signal y(t) is expressed as:

Z angn

where M > N, a,, is a weighting coefficient, and Ry denotes
the residual. The MP decomposes y(t) by finding the best
orthogonal projections amongst a set of basis functions from
the dictionary D that matches the structure of y(¢). The result
is a finite number of basis functions organized in a decreasing
order of energy. The standard MP algorithm is an iterative
algorithm and is outlined in the following steps.

)+ Rn, 4)

Step 1: Initialize n =1 and Ry = y(t).
Step 2: Compute |(R,,_1,g;(t))| for all g;(t) € D.
Step 3: Find g = argmax [(R,—1, g:(t))].
i (t
Step 4: Compute the \?véi;;hting coefficient: a,=(R,_1,g.).
Step 5: Compute the new residual: R, = R,—1 —an - g,.
Step 6: Remove g;; from D.
Step 7:If n = m or € < threshold, stop, where m is a given
iteration number and e is the energy of the residual
R, ; otherwise set n = n + 1 and go to Step 2.

Let the MP-decomposed HRV signal be denoted by yarp ().
The WVD of ypp(t) is given by

Feo T T o
W(t, f) = / Ymp (t + 5) Ynmp (t - 5) e 2T dr,

—0o0
&)
where the values of W (¢, f) are stored into an L; x Ly matrix
and the asterix symbol used as a superscript indicates the
operation of complex conjugation.

C. Feature Extraction

There are many features that can be extracted from the
TF distribution of the HRV signal to characterize the seizure
and non-seizure phenomena, such as central frequency, mean,
skewness, kurtosis, and Shannon entropy [19], [17] . In this
work, the skewness of MP-WVD HRV signal is chosen
because based on our experiential analysis, skewness best
characterizes changes in epileptic HRV. Skewness is a time-
domain feature that can be translated to the TF domain as
follows [19]

Ly Ly

(Lth —-1) UTF ZZ

i=1 j=1

Fskew - /J/TF)3 3 (6)

where prp and opp are the mean and standard deviation of
W (t, f) and are given by

Ly Ly
= W( 7
UTF = I.L, L ;; [4, j] (7
and .
Ly f
2
— 8
respectively.
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IV. RESULTS AND DISCUSSION

In this section, we illustrate the effectiveness of the proposed
ECG analysis technique in the discrimination of ictal HRV.

The HRYV of a particular patient’s (patient 1) one-hour ECG
data is depicted in Fig. 3. The blue signal corresponds to
the non-seizure HRV data and the red signal is the seizure
HRYV data. The seizure starts at 2638 seconds and lasts until
2693 seconds. This particular patient observes a sharp decrease
of HRV after the onset of the seizure, reaching 0.95 beats
per second (bps). The MP-WVD of a segment of the HRV
taken 20 seconds prior to the seizure onset and 20 seconds
after the seizure offset is depicted in Fig. 4. The HRV time-
domain signal is also shown in Fig. 4 for discussion purposes.
In this segment, the seizure onset and offset are marked by
arrows. Approximately ten seconds after the onset of the
seizure, activity in the low-frequency band (0.04-0.15 HZ) is
noticed, followed by a sharp decrease of spectral activity in
the very low frequency band (0.0033-0.04 Hz). This activity
coincides with the decrease in HRV that occurs 33 seconds
after the onset of the seizure. Also, Fig. 4 is of high resolution
and does not contain any interference terms. The skewness,
calculated from the MP-WVD of the HRV shown in Fig. 3, is
depicted in Fig. 5. The skewness of the HRV decreases after
the onset of the seizure and resumes normal activity after the
seizure episode has passed. Visually looking at the graph of
the skewness feature, we are able to detect the unusual activity
from the background features.

2

non-seizure HRV|
— seizure HRV
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Time(sec)

Fig. 3. HRV of patient 1.

The success of seizure onset detection systems greatly
depends on the type of features extracted from the data. As
seen from the clinical examples shown in Fig. 3 - Fig. 5, the
proposed MP-WVD HRYV processing technique allows for the
effective analysis of HRV so that discriminatory features can
be extracted from HRV.

V. CONCLUSIONS AND FUTURE RESEARCH

In this work, we describe a novel algorithm for the dis-
crimination of ictal HRV via the combination of the MP
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Fig. 5. Skewness of the MP-WVD HRV of patient 1.

and WVD algorithms. The HRV is decomposed into mono-
components signals via the MP algorithm prior to applying
the WVD algorithm. The time-frequency analysis of the HRV
signal allows for a deeper and more relevant decomposition
of the non-linear and non-stationary signals, thus extracting
more informative features. The ability to extract discriminatory
ictal and non-ictal HRV features allows for better detection
results. The proposed method to analyze the ECG signal has
demonstrated great potential for use in detection systems that
can be used for medical intervention and warning systems,
which is a topic of our future research.
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