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ABSTRACT

Sparse, non-negative signals occur in many applications. To
recover such signals, estimation posed as non-negative least
squares problems have proven to be fruitful. Efficient algo-
rithms with high accuracy have been proposed, but many of
them assume either perfect knowledge of the dictionary gen-
erating the signal, or attempts to explain deviations from this
dictionary by attributing them to components that for some
reason is missing from the dictionary. In this work, we pro-
pose a robust non-negative least squares algorithm that allows
the generating dictionary to differ from the assumed dictio-
nary, introducing uncertainty in the setup. The proposed al-
gorithm enables an improved modeling of the measurements,
and may be efficiently implemented using a proposed ADMM
implementation. Numerical examples illustrate the improved
performance as compared to the standard non-negative LASSO
estimator.

Index Terms— robust non-negative least squares, ADMM

1. INTRODUCTION

Non-negative least squares problems occur in a wide variety
of fields, such as hyperspectral imaging [1, 2], DNA microar-
ray analysis [3, 4], deconvolution [5], audio processing [6],
and spectroscopy [7], and the general problem has as a result
attracted notable attention in the recent literature (see, e.g.,
[8–10]). Much of this work has focused on finding compu-
tationally efficient and statistically reliable non-negative least
squares (NN-LS) estimators, as well as examining their con-
vergence properties. In this work, we build upon these ear-
lier efforts, striving to formulate a robust NN-LS estimator,
allowing the measured signal to be constructed from vectors
deviating from those occurring in the dictionary. This would,
for instance, be the case when the dictionary elements are
formed from some kind of clean reference signals that are
then not occurring exactly in the same form in the actual mea-
surements, such as would commonly occur if the reference
signals are measured in a laboratory environment, whereas
the measurements of interest are formed using, e.g., fewer
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samples, cheaper and/or less precise instruments (see also,
e.g., [7, 11–13]).

To elaborate on this notion, consider the measured non-
negative signal

y =
[
y(1) ... y(N)

]T
(1)

where (·)T denotes the transpose, and

y = Xa + e (2)

where X is an N × m dictionary matrix with non-negative
entries, a is a sparse non-negative vector of amplitudes, with
unknown sparsity, K, and e an additive non-negative noise.
If the dictionary matrix X is known, one may thus form the
non-negative least squares estimate as

minimize
a

‖y −Xa‖22
s.t a ≥ 0

(3)

where the inequality constraint should be interpreted element-
wise. This problem may be solved efficiently using, for in-
stance, a non-negativity constrained LASSO, i.e.,

minimize
a

‖y −Xa‖22 + λ ‖a‖1
s.t a ≥ 0

(4)

or via computationally more efficient solutions such as the
one presented in, e.g., [10]. However, the accuracy of the
estimate of a obtained using such methods depends strongly
on the assumption that the dictionary X is perfectly known.
If the assumed dictionary deviates significantly from the X
generating the signal, such approaches will not allow a to
be accurately reconstructed. Similarly, the accuracy of the
estimates will degrade in cases when some columns of X
are unknown, thus modeling the scenario of unknown sub-
stances being present in the signal (as examined in [7]). In
applications where the reference signals used to construct the
dictionary may differ from those actually measured, such as
would commonly occur when different measurement equip-
ments are used to form the different measurements, it is rea-
sonable to assume that the elements of the dictionary X are
only approximately the same as those occurring in the mea-
surements, allowing X to be decomposed as X = Φ + ∆,
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where Φ is the known part of the dictionary and ∆ is a ma-
trix of perturbations. In this work, we assume that ∆ is small
relative to Φ, such that the dictionary elements are similar,
although not precisely the same, as the signatures occurring
in the measurements. Without loss of generality, we further
assume that Φ has been normalized such that ‖Φi‖2 = 1,
for each dictionary column i, and that ‖∆i‖2 ≤ ε, for some
ε > 0. Given these assumptions, we propose a computation-
ally efficient and robust NN-LS estimator allowing for some
flexibility in the assumed dictionary.

2. ROBUST NON-NEGATIVE LEAST SQUARES

In order to achieve the desired robustness, we form the es-
timates of a by allowing the columns of the dictionary used
in the estimation to vary within balls of radii ε, centered on
the columns of Φ. This can be accomplished by introduc-
ing a new variable, W, defined such that every column of W
equals the corresponding column of X, scaled with the cor-
responding amplitude of a. Thus, W1 = Xa, where 1 is a
vector of ones. As a result, the optimization problem can be
expressed as

minimize
W

‖y −W1‖22 + λ

m∑
i=1

‖Wi‖2

s.t W ≥ 0∥∥∥∥ Wi

‖Wi‖2
−Φi

∥∥∥∥
2

≤ ε, i = 1, . . . ,m

(5)

with the inequalities interpreted elementwise. Here, the sec-
ond term of the objective function penalizes the norm of the
columns of W, thus having a sparsifying effect such that only
a few of the columns will be non-zero. The second constraint
in (5) ensures that the dictionary vectors of W do not devi-
ate too much from the assumed dictionary, i.e., Φ. This may
equivalently be expressed as

‖Wi‖2 (2− ε
2)− 2WT

i Φi ≤ 0, ∀i (6)

which is a convex constraint for ε2 < 2. Thus, (5) is a con-
vex optimization problem, which may be solved using stan-
dard convex optimization software such as, for instance, CVX
[14,15]. However, such estimators often scale poorly with in-
creasing data lengths, typically ensuring an unnecessary high
computational complexity. To alleviate this, we here proceed
to introduce an alternating direction method of multipliers
(ADMM) framework (see, e.g., [16, 17]), which decomposes
the optimization into a series of simpler problems, which each
can be solved more efficiently than the original problem. Af-
ter obtaining the Ŵ minimizing (5), an estimate of the com-
ponent ai of a may be formed as

âi =
∥∥∥Ŵi

∥∥∥
2

(7)

Algorithm 1 The proposed RONNIE algorithm
1: initialize k = 0, Z0 = 0N×m and

U
(`)
0 = D

(`)
0 = 0N×m, ` = 1, 2, 3

2: repeat {ADMM scheme}
3: Zk = 1

3

∑3
j=1

(
U

(j)
k + D

(j)
k

)
4: U

(1)
k+1 = T

(
ζk,1,

m
µ

)
5: U

(2)
k+1 = Sblock

(
S+

(
ζk,2

)
, λµ

)
6: U

(3)
k+1 = Γ

(
ζk,3, ε

)
7: Dk+1 = Dk −

(
Zk+1 −Uk+1

)
8: k ← k + 1
9: until convergence

10: Ŵ = Zk

3. EFFICIENT ADMM IMPLEMENTATION

To efficiently implement (5), we exploit the ideas in [18] on
how to extend the ADMM framework to the sum of more than
two convex functions. In order to do so, let

G =
[

I I I
]T

(8)

where I is theN×N identity matrix. Furthermore, define the
sets Bj as

Bj =
{

Uj ∈ RN |
∥∥∥∥ Uj

‖Uj‖
−Φj

∥∥∥∥
2

≤ ε
}

(9)

Then, the minimization in (5) may be rewritten as

minimize
W

3∑
i=1

gi(W) (10)

where

g1(U) =
1

2
‖y −U1‖22 (11)

g2(U) = λ

m∑
j=1

‖Uj‖2 + Ω{RN×m
+ }(U) (12)

g3(U) =
m∑
j=1

Ω{Bj}(Uj) (13)

with

Ω{B}(U) =

{
0 if U ∈ B
+∞ if U /∈ B

(14)

for any set B. Let Z ∈ RN×m be the primal optimization vari-
able, and introduce the auxiliary variable U, and dual variable
D, defined as

U =
[

U(1)T U(2)T U(3)T
]T

(15)

D =
[

D(1)T D(2)T D(3)T
]T

(16)
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Fig. 1. Percentage of estimates where the support of the signal
is recovered, for signals with three present signatures, as a
function of the angle between each signature and its perturbed
counterpart, φ.

where U(j) and D(j) ∈ RN×m.
With these definitions, the k + 1 updating step of the

ADMM may be expressed as

Zk+1 = arg min
Z

∥∥∥GZ−Uk −Dk

∥∥∥2
F

(17)

where

U
(`)
k+1 = arg min

U(`)

g`

(
U(`)

)
+
µ

2

∥∥∥U(`) − ζk,`

∥∥∥2
F

(18)

and

ζk,` = Zk+1 −D
(`)
k (19)

for ` = 1, 2, 3.
Simplifying the minimization further, the explicit updating
may be expressed as

Zk+1 =
1

3

3∑
j=1

(
U

(j)
k + D

(j)
k

)
(20)

U
(1)
k+1 = T

(
ζk,1,

m

µ

)
(21)

U
(2)
k+1 = Sblock

(
S+

(
ζk,2

)
,
λ

µ

)
(22)

U
(3)
k+1 = Γ

(
ζk,3, ε

)
(23)

where µ is an inner convergence variable and [ · ]j denotes
column j of the enclosed matrix. The function T

(
ζk,1,

m
µ

)
in

(21) returns a matrix whose jth column is

1

µ

(
y −

(
1 +

m

µ

)−1(m
µ

y +
m∑
i=1

[ζk,1]i

))
+ [ζk,1]j (24)

m/N
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S
u

p
p

o
rt

 r
e

c
o

v
e

ry
 r

a
te

 (
%

)

0

10

20

30

40

50

60

70

80

90

100

RONNIE, SNR = 10d dB
RONNIE, SNR = 5 dB
NN-LASSO, SNR = 10 dB
NN-LASSO, SNR = 5 dB

Fig. 2. Percentage of estimates where the support of the signal
is recovered, for signals with three present signatures, when
varying the relative sizes of the number of columns of Φ (m)
and the number of data points (N).

For the update in (22), the operator S+ operates elementwise
on a matrix, setting negative elements to zero, while leaving
positive ones unchanged. Similarly, the operator Sblock oper-
ates columnwise, shrinking each non-zero column as

Uj →
‖Uj‖2 − λ/µ
‖Uj‖2

Uj (25)

Finally, for the updating step in (23), one has to solve

minimize
[U(3)]i

∥∥∥[U(3)]i − [Zk+1]i + [D
(3)
k ]i

∥∥∥2
2

s.t
∥∥∥[U(3)]i

∥∥∥
2
(2− ε2)− 2[U(3)]Ti Φi ≤ 0

(26)

If one considers the Karush-Kuhn-Tucker (KKT) conditions
for the optimum of this problem (see, e.g., [19]), the solutions,
as a function of the Lagrange multiplier γ, are given by

[U(3)]i(γ) =
Z̃i + 2γΦi∥∥∥Z̃i + 2γΦi

∥∥∥
2

(∥∥∥Z̃i + 2γΦi

∥∥∥
2
− γ(2− ε2)

)
(27)

where
Z̃i = [Zk+1]i − [D

(3)
k ]i (28)

Thus, each instance of (26) may be solved efficiently by solv-
ing a 1-dimensional optimization problem in γ; in fact, the
optimal γ is the positive root of a quadratic equation. The
function Γ returns the matrix whose ith column is the solu-
tion [U(3)]i(γ

∗), where γ∗ is the corresponding solution of
(26) using the parametrization (27). This yields the update
(23). The estimate of W is formed as Ŵ = Zk in the last
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Fig. 3. Percentage of estimates where the support of the signal
is recovered, for signals with three present signatures, when
varying the assumed perturbation angle φ, with the true angle
being 20 degrees.

iteration k. The full ADMM implementation is presented in
Algorithm 1. We term the resulting method the RObust Non-
Negative constraIned Estimator (RONNIE).

4. NUMERICAL RESULTS

We proceed to examine the performance of the proposed es-
timator using synthetic signals. As colinear perturbations of
normalized vectors will have no detrimental effect on the per-
formance on neither the NN-LASSO nor RONNIE, we here
examine the effects of orthogonal perturbations. Let N = 60,
m = 90, and choose the elements of Φ as the absolute values
of independent identically distributed (i.i.d.) samples from a
Student’s t distribution with 4 degrees of freedom. In order
to examine the method’s robustness to perturbations not sup-
ported by the dictionary elements, each measured perturbed
signature j was formed as

Xj =
(1− α)Φj + α∆j√

(1− α)2 + α2
(29)

where Φj is the jth column of Φ, and ∆j a perturbation or-
thogonal to Φj , for α ∈ (0, 1), ensuring that the angle be-
tween Φj and Xj is φ. The connection between the angle φ,
in radians, the size ε of the uncertainty sphere, and α may be
expressed as

ε =
√
2 (1− cos (φ)) (30)

φ = arccos

(
1− α√

(1− α)2 + α2

)
(31)
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Fig. 4. Percentage of estimates where the support of the signal
is recovered, for signals with three present signatures, when
varying the assumed perturbation angle φ, with the true angle
being 40 degrees.

It is assured that Xj is a non-negative vector. The measured
signal is composed of three such perturbed signatures and ad-
ditive noise according to y =

∑3
j=1 Xj + e, where the ele-

ments of e are chosen from an exponential distribution.
In the simulation study, the assumed size ε of the uncer-

tainty sphere, or equivalently the angle φ, as well as the reg-
ularization parameter λ for RONNIE and the NN-LASSO are
set using hand-tuning. Figure 1 shows the probability of cor-
rectly recovering the support of the signal for the proposed
method as compared to the NN-LASSO in (4), as a function of
the angle between the dictionary signature and the perturbed
signature, φ, for varying signal-to-noise ratios (SNRs), here
defined as

SNR = 10 log10

∥∥∥∑3
j=1 Xj

∥∥∥
2

‖e‖2
(32)

The presented results are obtained using 500 Monte Carlo
simulations. As can be seen from the figure, the performance
of the NN-LASSO suffers greatly when φ increases, as large
perturbations causes it to distribute the power of the three
present signatures over a larger part of the dictionary. In con-
trast, RONNIE displays the expected robustness to the orthog-
onal perturbation, exhibiting almost flawless performance for
SNR 10 dB and perturbation angles below and including 40
degrees. The performance of the NN-LASSO and RONNIE
are both worse for SNR = 5 dB, but for RONNIE, the support
recovery rate is still over 70% even for a perturbation angle
of 40 degrees.

Proceeding to examine the sensitivity to the relative sizes
of N and m, we fix N = 40 and vary m so that m/N =
[0.1, 0.5, 1, 2, 4, 6]. This is done for φ = 30 degrees, with the
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rest of the experiment setup being identical to the previous
one. The results are shown in Figure 2. As can be seen from
the figure, the performance of the NN-LASSO quickly deteri-
orates when the number of basis functions increase relative to
the number of signal samples. This is caused by the increasing
probability that one of the non-present columns of X will be
more correlated to the signal than the orthogonally perturbed
true columns Xj , whenm increases, causing the NN-LASSO
to erroneously pick columns Xi with the largest inner prod-
ucts XT

i y. It should further be noted that the performance of
RONNIE does not seem to suffer significantly from increas-
ing the ratio m/N ; the support recovery rate is still over 90%
when we have 6 times more columns in X than signal sam-
ples for SNR 10 dB. For SNR 5 dB, the support recovery rate
is lower, but it is still almost 70% for RONNIE when we have
6 times more columns in X than signal samples.

Next, we evaluate the sensitivity of RONNIE to different
choices of the assumed perturbation angle, φ. Here, we set
N = 60, m = 90, and consider SNRs 10 and 5 dB. The an-
gle φ of the perturbation is then fixed, and we apply RONNIE
using different assumed values of φ. The other aspects of the
signal construction is identical to the earlier experiments. The
results are shown in Figures 3 and 4, for true angles φ = 20
and 40 degrees, respectively. The support recovery rate for the
NN-LASSO is also included as reference, although its perfor-
mance of course does not depend on the assumed angle φ. As
can be seen in the figures, RONNIE displays considerable ro-
bustness to the choice of φ, yielding support recovery rates
higher than the NN-LASSO for all considered angles. As can
be seen from the figures, the support recovery rate of RON-
NIE is only lowered considerably when the assumed angle
φ is set well below the true angle, though the method does
not suffer from setting the assumed angle significantly higher
than the true angle.
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