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ABSTRACT

In this work we consider a two-channel passive detection problem,

in which there is a surveillance array where the presence/absence of

a target signal is to be detected, and a reference array that provides

a noise-contaminated version of the target signal. We assume that

the transmitted signal is an unknown rank-one signal, and that the

noises are uncorrelated between the two channels, but each one hav-

ing an unknown and arbitrary spatial covariance matrix. We show

that the generalized likelihood ratio test (GLRT) for this problem re-

jects the null hypothesis when the largest canonical correlation of the

sample coherence matrix between the surveillance and the reference

channels exceeds a threshold. Further, based on recent results from

random matrix theory, we provide an approximation for the null dis-

tribution of the test statistic.

Index Terms— Passive detection, generalized likelihood ratio

test, reduced-rank, canonical correlations, random matrix theory.

1. INTRODUCTION

In this work we consider a passive detection problem in which there

is a surveillance channel where the presence/absence of a target

signal is to be detected, and a reference channel that provides a

noise-contaminated version of the target signal, and hence assists

the surveillance channel in the detection process. This problem is

of interest in applications such as passive radar, passive sensing

or communications, among others. In passive radar, for instance,

commercial RF signals are used as non-cooperative transmitters

that illuminate potential targets of interest [1–3]. The reference

channel acquires a version of the transmitted signal through a direct

path (i.e., transmitter-receiver), whereas the surveillance channel

acquires a different version of the transmitted signal through a tar-

get path (i.e., transmitter-target-receiver). The signal paths for the

reference and the surveillance channels are typically separated by

digital beamforming using directional antennas. In communications,

passive detection might have application in cognitive radio [4], or to

enhance the transmission opportunities of small cells in Heteroge-

neous Networks (HetNets) [5].

Passive target detection with a noisy reference channel has re-

cently been considered in [1, 6] for an unknown deterministic signal
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and single-antenna receivers. The multi-antena case, for determin-

istic signals and under spatially white noise of known variance, has

been addressed in [2]. In this paper, we address the passive detection

problem in a multivariate normal model when the surveillance and

reference channels are equipped with M antennas, the transmitted

signal is an unknown rank-one signal, and the noises at surveillance

and reference channels are uncorrelated between them, but each hav-

ing an unknown and arbitrary spatial covariance matrix. This a prob-

lem of testing the covariance structure in a two-channel multivariate

normal model. Detection of a rank-one signal under white noise of

unknown level has been addressed in [7], and extensions to diagonal

noise covariance matrices and rank-P signals can be found in [8],

and [9, 10], respectively. Other variants of this problem have been

considered in [11–16]. Differently from these single-channel detec-

tion, the model considered in this paper cannot be solved without the

assistance of a reference channel.

In this paper, we show that the generalized likelihood ratio test

(GLRT) for our problem rejects the null hypothesis when the largest

canonical correlation of the sample coherence matrix between the

surveillance and the reference channels exceeds a threshold. Further,

we provide an approximation for the null distribution that allows us

to set the threshold for a given probability of false alarm.

1.1. Notation

The superscripts (⋅)T and (⋅)H denote transpose and Hermitian, re-

spectively. The determinant, trace and Frobenius norm of a matrix

A will be denoted, respectively, as det(A), tr(A) and ∣∣A∣∣F . IM
is the identity matrix of dimensions M ×M , and 0M denotes ei-

ther a column vector with M zeros, or the zero matrix of dimensions

M ×M (the difference should be clear from the context). We use

A1/2 (A−H/2) to denote the square root matrix of the Hermitian ma-

trix A (A−1). The expectation operator will be denoted by E[⋅], and

x ∼ CN(0,R) indicates that x is a complex circular Gaussian ran-

dom vector of zero mean and covariance R. Finally, diagM(A) is

a block-diagonal matrix formed by M ×M blocks on the diagonal.

2. PROBLEM FORMULATION

We consider a passive network consisting of a reference channel and

a surveillance channel, both equipped with M antennas. Denoting

the signal transmitted by the non-cooperative transmitter as s[n], the

detection problem can be formulated as follows:
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H0 ∶ [xs[n]
xr[n]] = [0M

hr
] s[n] + [vs[n]

vr[n]] ,

H1 ∶ [xs[n]
xr[n]] = [hs

hr
] s[n] + [vs[n]

vr[n]] ;
(1)

where xs[n] ∈ CM and xr[n] ∈ CM are the surveillance and

reference signals, hs and hr represent the channels, and vs[n],
vr[n] model the additive noise. For notational convenience,

the signal, noise, and channel vectors can be stacked as x[n] =[xs[n]T ,xr[n]T ]T , v[n] = [vs[n]T ,v[n]Tr ]T and h = [hT
s ,h

T
r ]T ,

respectively.

In this work, we make the following assumptions:

(A1) The propagation delay difference between the surveillance

and reference channels, as well as the Doppler shift in the

case of moving targets, have been previously estimated and

compensated via cross-correlation processing, like in bistatic

radar systems [17].

(A2) The transmitted signal is modeled as a temporally white com-

plex Gaussian signal: s[n] ∼ CN(0,1).
(A3) The noise is modeled as a temporally white complex Gaus-

sian vector with a 2M × 2M spatial noise covariance matrix

given by

Σ = E[v[n]v[n]H] = [Σss 0M

0M Σrr
] , (2)

where Σss and Σrr are arbitrary full-rank positive definite

(pd) matrices.

With these assumptions, the detection problem (1) amounts to

testing between two different structures for the composite covariance

matrix of x[n] ∼ CN(02M ,R). More specifically,

H0 ∶ x[n] ∼ CN(02M ,R0),H1 ∶ x[n] ∼ CN(02M ,R1), (3)

where

R0 = [Σss 0M

0M Σrr + hrh
H
r

] , (4)

and

R1 = [Σss + hsh
H
s hsh

H
r

hrh
H
s Σrr + hrh

H
r

] . (5)

We now consider N consecutive array snapshots [x[1], . . . ,x[N]] =
X ∈ C2M×N , which are i.i.d. realizations of x[n] ∼ CN(02M ,R).
The likelihood can be written as

f(X;R) = 1

π2MN det(R)N exp−{N tr (SR−1)} , (6)

where S = 1

N
XXH is the sample covariance matrix, which can be

partitioned as

S = [Sss Ssr

SH
sr Srr

] , (7)

where Sss is the sample covariance matrix of the surveillance chan-

nel and the other blocks are defined similarly.

Remark: Notice that it is not possible to solve the considered

detection problem using only the surveillance channel and exploiting

the rank-deficient structure of the transmitted signal as in [7–10,12].

The reason is that, since Σss is an arbitrary positive definite matrix,

both hypotheses have the same set of admissible covariance matrices

and the hypotheses are thus indistinguishable.

3. GLRT DETECTOR

3.1. Problem Invariances

Let us first consider the problem invariances.

Proposition 1. The detection problem (3) is invariant to the trans-

formation group

T = {T ∶ T = [Ts 0M

0M Tr
] , det(T) ≠ 0} , (8)

with group action TRxxT
H .

Proof. If we apply an arbitrary block-diagonal transformation T to

the vector of observations x, it is clear that the structure of the co-

variance matrices under each hypothesis remains unchanged after

the transformation. As stated in [18], since the distributions remain

in the same family (zero-mean complex Gaussians) and the parame-

ter spaces are preserved, we can conclude that the detection problem

(3) is invariant to block-diagonal transformations.

Now, it is well-known that the canonical correlations between

the surveillance and the reference channels are a complete set of

invariants to block-diagonal transformations [19], [20]. Therefore,

any invariant detector must be only a function of them. The sample

canonical correlations are the singular values of the sample coher-

ence matrix between the surveillance and reference channels C =

Sss
−1/2SsrSrr

−H/2. More specifically, from the singular value de-

composition (SVD) C = FKGH , the matrix K = diag (k1,⋯, kM)
contains the sample canonical correlations 1 ≥ k1 ≥ ⋯ ≥ kM ≥ 0

along its diagonal.

In summary, any invariant detector for our problem must be a

function of the canonical correlations. This function, however, will

depend in general on the unknown parameters, and therefore the uni-

formly most powerful invariant (UMPI) test is unlikely to exist.

3.2. Derivation of the GLR test

A conventional approach when the UMPI test does not exist, is the

generalized likelihood ratio test (GLRT), in which the unknown pa-

rameters are replaced by their maximum likelihood estimates under

each hypothesis

maxR1
f(X;R1)

maxR0
f(X;R0)

H1

≷
H0

η, (9)

where R0 and R1 are matrices with the block structure shown in (4)

and (5), respectively. It is known that the GLRT is invariant to trans-

formations for which the detection problem itself is invariant [21].

This means that the GLRT must be also a function of the canonical

correlations. More specifically, we have the following result, which

is the main contribution of this paper.

Theorem 1. The GLRT for H0 ∶ R = R0 versus H1 ∶ R = R1 can

be written as follows

k
2

1

H1

≷
H0

η, (10)

where k1 is the maximum sample canonical correlation between the

surveillance and reference channels, and η is a suitable threshold.
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Proof. Under H0, the composite covariance R0 in (4) has a block-

diagonal structure where the blocks have no particular structure apart

from being positive definite matrices. Then, it is well known that its

ML estimate is R̂0 = diagM(S), and the compressed likelihood

underH0 reduces to

f(X; R̂0) = e−2MN

π2MN det(Sss)N det(Srr)N . (11)

On the other hand, to find the ML estimate of R1 amounts to

solving the following optimization problem

max
R̂1∈G

− log det R̂1 − tr (R̂−11 S) , (12)

where G denotes the set of pd matrices with the required structure:

arbitrary positive definite blocks along the main diagonal and rank-

one blocks along the antidiagonal, as in (5). We can now apply block

diagonal transformations to S and R̂1 such that

S = [Ls 0M

0M Lr
] [IM K

K IM
] [LH

s 0M

0M LH
r

] = LΛsL
H
, (13)

R̂1 = [Ts 0M

0M Tr
] [IM J

J IM
] [TH

s 0M

0M TH
r

] = TΛ1T
H
, (14)

where K = diag (k1,⋯, kM) contains the sample canonical corre-

lations, and J = diag (σ1,0,⋯,0) is a diagonal matrix with a single

non-zero element on its diagonal satisfying 0 < σ1 ≤ 1. Notice also

that Ls = S
1/2
ss F and Lr = S

1/2
rr G, where F and G contain the left

and right singular vectors of C.

Substituting (13) and (14) into (12), we obtain the following

equivalent optimization problem

max
T∈T ,0<σ1≤1

− log det (TΛ1T
H) − tr (T−HΛ

−1

1 T
−1
LΛsL

H) ,
(15)

where T is the transformation group defined in (8). Defining PH
=

T−1L, which also belongs to the transformation group T , problem

(15) can be reformulated as

max
P∈T ,0<σ1≤1

log det (PH
Λ
−1

1 P) − tr (Λ−11 P
H
ΛsP) . (16)

After some algebra we find that Λ−11 can be written as

Λ
−1

1 = [IM J

J IM
]−1 = I2M + [−σ1D D

D −σ1D
] , (17)

where D = diag (− σ1

(1−σ2

1
)
,0,⋯,0). Plugging (17) into (16) yields

the following problem

max
P∈T ,0<σ1≤1

log det (PH
P) − tr(PH

P) − log(1 − σ2

1)+
σ1(1 − σ2

1
) (2Re(pH

s Kpr) − σ1∣∣ps∣∣2 − σ1∣∣pr ∣∣2) ,
(18)

where ps and pr are the first columns of Ps and Pr , respectively.

Solving (18) with respect to Ps and Pr , it is easy to see that they

should be unitary matrices. The optimization with respect to σ1

shows that we have to take Ps = Pr =IM and σ1 = k1, thus making

the last term in (18) zero.

Now, recalling that Ps = T
−1

s Ls, we see that Ps = IM implies

Ts = Ls = S
1/2
ss F, and similarly Tr = Lr = S

1/2
rr G. Substitut-

ing these values into (14), the ML estimate of the covariance matrix

underH1 is finally given by

R̂1 = [ Sss S
1/2
ss f1 k1 g

H
1 S

1/2
rr

S
1/2
rr g1 k1 f

H
1 S

1/2
ss Srr

] . (19)

It is now easy to check that the compressed likelihood underH1

reduces to

f(X; R̂1) = e−2MN

π2MN (det(Sss)det(Srr)(1 − k2

1
))N , (20)

and, finally, the likelihood ratio is

f(X; R̂1)
f(X; R̂0) =

1

(1 − k2

1
)N , (21)

which proves Theorem 11.

In comparison to previous works on detecting correlation in

multi-channel time series, the main difference of our work lies on

the fact that the anti-diagonal blocks of the composite matrix under

the alternative for our model, R̂sr and R̂rs, are rank-one matrices.

Otherwise, if the covariance matrix under H1 were an arbitrary

pd matrix, the GLR statistic would be the following generalized

Hadamard ratio [23], [24]

H =
det(S)

det(Sss)det(Srr) =
M

∏
i=1

(1 − k2

i ) (22)

Notice also that 1 − H is in fact the Generalized Coherence (GC)

originally defined in [25], and widely applied to multi-channel de-

tection problems since then.

3.3. Distribution under the null hypothesis

Under H0, the joint density of the squared canonical correlations

was derived in 1939 by Hsu, [26]. However, to obtain the marginal

distribution of k2

1 from the joint density is not an easy task in gen-

eral, and no simple closed-form expression exists. In this work, we

exploit recent results from random matrix theory that provide the

asymptotic distribution of the largest squared canonical correlation

when N →∞, M →∞ with M/N → p. Specifically, we have the

following result adapted from [27].

Theorem 2. Let l1 = log(k2

1/(1−k2

1)), be the logit transform of the

largest squared canonical correlation. Then, as N → ∞, M → ∞,

M/N → p, we have the limiting distribution

P { l1 − µN,M

σN,M

≤ x}→ F2(x), (23)

where F2(x) is the distribution function for the Tracy-Widom law of

order 2. The centering and scaling constants are given by

µN,M =
σ−11 u1 + σ

−1

2 u2

σ−1
1
+ σ−1

2

, and σ
−1

N,M =
1

2
(σ−11 + σ−12 ) , (24)

1After the submission of this paper, it was brought to our attention that a
different proof of this result was given in [22].
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Fig. 1. Empirical histogram and unitary Tracy-Widom distribution

(solid line) for M = 4 antennas and N = 20 snapshots.

where u1 = 2 log tan(2α), u2 = 2 log tan(2β), and

σ
3

1 =
16

(N + 1)2 sin2(4α) sin2(2α) ,
σ
3

2 =
16

(N − 1)2 sin2(4β) sin2(2β) ,
with

sin
2(α) = M + 1/2

N + 1
, and sin

2(β) = M − 1/2
N − 1

.

Proof. See Theorem 2 in [27].

The accuracy of the Tracy-Widom approximation is verified in

Fig. 1, which shows the normalized histogram of 105 realizations of

the random variable
l1−µN,M

σN,M
under the null, and the unitary Tracy-

Widom distribution F2(x) in solid line. In this example the number

of antennas is M = 4 and the number of snapshots is N = 20. The

centering and scaling parameters obtained from (24) are µN,M =

0.5729 and σN,M = 0.4091, respectively. Notice also that these pa-

rameters only depend on the number of antennas, M , and the number

of snapshots, N . Therefore, the proposed GLR test has the constant

false alarm rate (CFAR) property with respect to the reference chan-

nel SNR.

4. SIMULATION RESULTS

In this section we evaluate the performance of the GLR detector by

means of Monte Carlo simulations. According to our model, the ad-

ditive noise follows a Gaussian distribution with arbitrary, randomly

generated, covariance matrices (Σss,Σrr). For each realization we

scale the channels so that the signal-to-noise-ratio (SNR), defined

as SNRi = 10 log
10
(hH

i hi/ tr(Σii)), i = {s, r}, is constant. For

comparison, we have also included the performance of three other

detectors:

1. Generalized Coherence (GC) detector [23]- [25].

2. Covariance matching detector: this detector uses structured

estimates for R0 and R1 that minimize the Frobenius norm

between the sample covariance and the estimate: ∣∣S −R∣∣2F .

 ! " # $ % &' ( ) ) ( ) * ) + )
, -

)) . *) . /) . 0) . 1( 2 3 4 52 66 7 8 9 : ; < = > 96 6
Fig. 2. Pd curves versus SNR for an scenario with M = 4 antennas

and N = 100 snapshots, Pfa = 1e − 3.

3. Cross-correlation (CC) detector, which uses ∣ tr(SH
srSsr)∣ as

statistic. This is an extension to the multiantenna case of the

CC detector typically used in passive radar systems [3].

For the considered scenario, the entries of hs and hr are ran-

domly drawn from a zero-mean Gaussian distribution with unit vari-

ance, and scaled to achieve the desired SNR. The probability of false

alarm for all detectors is fixed to Pfa = 1e−3. The threshold for the

GLRT that achieves the required Pfa is obtained using the Tracy-

Widom approximation described in subsection 3.3, whereas for the

GC detector we use the null distribution derived in [24]. For the co-

variance matching and the cross-correlation detectors the threshold

is determined empirically using 105 random realizations under H0.

Moreover, for each SNR and for each realization of the unknowns(hs,hr,Σss,Σrr), the probability of detection is estimated from

2000 independent simulations.

The first example involves a scenario with M = 4 antennas and

N = 100 snapshots. Fig. 2 depicts the probability of detection Pd

versus the SNR (we assume that the SNR is the same for both chan-

nels) for the considered detectors. The GLRT performs slightly bet-

ter than the GC detector, and both clearly improve on the covariance

matching and the CC detectors. Fig. 3 shows the results obtained

for a scenario with M = 8 antennas and N = 250 snapshots, where

we can observe that the relative advantage of the GLRT, which ex-

ploits the rank-one structure of the covariance matrix, with respect to

the GC detector becomes more important as the number of antennas

increases.

5. CONCLUSIONS

This paper addressed the problem of detecting a rank-one signal in

a two-channel passive network when the noise covariance matrices

at both the surveillance and the reference channels are arbitrary pos-

itive definite matrices. The GLRT for this problem is given by the

largest empirical canonical correlation between the surveillance and

the reference channels. Recent results from random matrix theory

show that the limiting distribution of the test statistic under the null

converges to a Tracy-Widom law of order 2, which allowed us to set

the threshold for a given false alarm probability.
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Fig. 3. Pd curves versus SNR for an scenario with M = 8 antennas

and N = 250 snapshots, Pfa = 1e − 3.
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