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ABSTRACT

Monte Carlo (MC) methods are widely used for statistical in-
ference in signal processing applications. A well-known class
of MC methods is importance sampling (IS) and its adaptive
extensions. In this work, we introduce an iterated importance
sampler using a population of proposal densities, which are
adapted according to an MCMC technique over the popula-
tion of location parameters. The novel algorithm provides a
global estimation of the variables of interest iteratively, using
all the samples weighted according to the deterministic mix-
ture scheme. Numerical results, on a multi-modal example
and a localization problem in wireless sensor networks, show
the advantages of the proposed schemes.

Index Terms— Adaptive importance sampling, MCMC
methods, parallel chains, Bayesian inference.

1. INTRODUCTION

Monte Carlo methods are widely used in signal processing
applications [1]. Importance sampling (IS) and Markov Chain
Monte Carlo (MCMC) [2] are two well-known Monte Carlo
(MC) techniques to efficiently compute integrals involving
a complicated multidimensional target probability density
function (pdf), w(x) with x € RP=. Both approaches use a
simpler proposal pdf, ¢(x), to draw random candidates which
are weighted or filtered in different ways. In both cases, the
variance of the corresponding estimators is directly related
to the discrepancy between the shape of the proposal and the
target. For this reason, several adaptive schemes have been
proposed [3-7].

In this work, we mix together the IS and MCMC ap-
proaches, while preserving the advantages of both. We in-
troduce the Markov Adaptive Importance Sampling (MAIS)
method, where MCMC outputs provide the location param-
eters for the proposal pdf used to obtain the IS estimators.
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Therefore, after a burn-in period, the proposal pdf is essen-
tially jumping around the modes of the target, extracting
local features using the set of weighted samples. Moreover,
the estimation of the normalizing constant of the target is
straightforward in this case. A population approach is also in-
troduced. We consider N parallel chains interacting through
the deterministic mixture weighting scheme [8]. At each it-
eration, the Parallel Interacting MAIS (PI-MAIS) algorithm
computes iteratively a global IS estimate, taking into account
all the samples generated up to that iteration. The cloud of
N different proposal pdfs is updated considering /N parallel
Metropolis-Hastings (MH) chains [2]. The outputs of the MH
methods are then used as location parameters for /N proposal
densities, which are jointly applied in a multiple IS approach.
Namely, in an upper level, independent parallel chains adapt
the location parameters of different proposal densities. In
a lower level, these proposal pdfs interact for providing a
unique global IS estimator [12]. Unlike other techniques in
the literature (e.g., [3]), the novel method does not require
resampling steps, thus avoiding the loss of diversity in the
population. The new algorithm improves the performance (in
terms of mean squared error) and the robustness w.r.t. the
choice of the proposal parameters.

2. PROBLEM STATEMENT AND BACKGROUND

In many applications, the goal is obtaining the posterior den-
sity function (pdf) of a set of unknown parameters given the
observed data. Mathematically, denoting the vector of un-
knowns as x € X C RP= and the observed data as yeycC
RPv, the posterior pdf is given by

A(xly) = )

where {(y|x) is the likelihood function, g(x) is the prior pdf,
and Z(y) is the normalization factor.! The computation of a
particular moment of x is obtained as

x w(x]y) = L(y|x)g(x), (1)

1
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IFor the sake of simplicity, in the sequel 7(x|y) and 7(x|y) will be
denoted as 7(x) and 7(x) respectively.
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where f(-) can be any integrable function of x. In many prac-
tical scenarios, obtaining a closed-form expression for (2) is
impossible, and Monte Carlo sampling techniques are used to
obtain an approximate solution instead.

2.1. Importance Sampling (IS)

Let us consider K samples (x3,...,Xg) drawn from a pro-
posal pdf, ¢(x), with heavier tails than the target, w(x). The
classical importance weights associated to the samples are
given by
W = W(Xk), k=1
q(xx)

Using the samples and weights, (2) can be approximated as

... K. 3)

K
. 1
I = KZ ;wkf(xk), (4)
where Z = % Zli,(=1 wy, is an unbiased estimator of Z =

Jp m(x)dx [2]. Eq. (4) provides a consistent estimator of I by
means of a particle approximation of the target distribution,
{Xk, ﬁk}?:l with

Wi,

- =K
> k1 Wk

For an arbitrary f(x), the variance of the importance sam-
pling (IS) estimators depends on the discrepancy between
m(x) and ¢(x) [2]. Therefore, having a proposal tailored to
the target is essential to obtain good IS estimators.

Dk k=1,...,K.

)

2.2. Multiple Importance Sampling (MIS)

The IS approach can be easily extended using different pro-
posal densities, ¢;(x) fori = 1,...,Q = % In this case,
we draw M samples from each proposal, x; ~ ¢;(x) for
k=1,..., K = MQ and i = [%W obtaining the mul-
tiple importance sampling (MIS) scheme.? For the sake of
simplicity, let us consider a population of proposal densities,
q:(x;|p;, C;), completely defined by their location (u;) and
scale (C;) parameters. Then, the effective proposal pdf for the
MIS approach is given by the following mixture of densities,

Q
V) = 55 3 axlp, o). )
=1

Now, at least two approaches can be taken to obtain a particle
approximation of the target: using the classical IS weights
given by (3) or computing the deterministic mixture (DM)
weights [8]: Wy = 7(Xx)/®¥(xx). The DM-MIS approach
entails a larger computational cost, but provides estimators
with a reduced variance w.r.t. the standard MIS [7,9].

2Note that I is still given by (4), although the samples now come from
different proposals, and thus wy, = 7(xx)/q: (Xk)-
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3. MARKOV ADAPTIVE IMPORTANCE SAMPLING

The underlying idea of this paper is trying to provide a
good configuration for the location parameters (p; for i =
1,...,Q) iteratively. Note that the mixture in Eq. (5) can
be seen as a kernel density approximation of the target pdf,
7(x) o m(x), where the proposals ¢; play the role of the
kernels [10, Chapter 6]. Hence, following kernel density es-
timation arguments, the ideal configuration for the location
parameters is p; ~ 7(w). In order to obtain p; ~ T(p), we
consider an MCMC technique driving the IS algorithm: at
each iteration, the MCMC outputs provide new location pa-
rameters, p;, for the proposal pdfs used in the IS estimation.

In this section, we introduce the Markov Adaptive Im-
portance Sampling (MAIS), which is the single chain version
of the Parallel Interacting Markov Adaptive Importance Sam-
pling (PI-MAIS) algorithm described in the following section.
Essentially, an MCMC method (in this case, a simple MH) is
used to provide a suitable location parameter p; and then a
standard IS is performed:

1. Sett = 1and Hy = 0, and choose the values of M, T,
1 and C.

2. Draw p’ from a proposal pdf ¢(u|u:, C), where p; and
C are the location and scale parameters, respectively.

3. Set p;y1 = p' with probability

(' )p(pip’, C)
(o) (W |pe-1,C)

a = min |1,

Otherwise, set p;+1 = py (With probability 1 — «).

4. Drawxgj) ~ q(x|p41,C) forj=1,..., M.

5. Weight the samples as

m(x{")

w =
g(x? |41, C)

6. Normalize the weights
wf’) _(j) St

() _ __ 0 S
Yo Z?;wg) -

Py =

where 5, = 321" w) and H, = H,_1 + S..
7. Ift < T, then set t = ¢ 4+ 1 and repeat from Step 2.

Otherwise, stop.

8. output {x\"), s} forj =1,...,Mandt =1,....T,
and Zp = ﬁHt.

Note that we have two different proposal densities in this
Monte Carlo algorithm: one proposal for the MH adaptation
() and another one for the IS estimation (q). The MH tech-
nique is applied to obtain good location parameters for the
underlying IS scheme. The global estimation is then obtained
iteratively using K = MT samples.
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4. PARALLEL INTERACTING MAIS

The idea of the MAIS algorithm can be easily extended to a
population of proposal pdfs. The Parallel Interacting MAIS
(PI-MAIS) algorithm provides a particle approximation of
the target by drawing samples from a population of proposal
pdfs whose location parameters are updated following an
MCMC scheme. The deterministic mixture approach [8] is
applied to build the importance weights, providing the inter-
action among the N proposal pdfs. MAIS is a special case of
PI-MAIS with N = 1. PI-MAIS is described below:

1. Initialization: Set t = 1, [y = 0 and Hy = 0. Choose

the initial population,

Po = {m1,0,--, N0},

and N covariance matrices C; (¢ = 1,...,N). Choose
the parametric form of the N normalized proposal pdfs,
gi,+» with parameters u;: and C; (e.g., Gaussians or t-
Student). Let T be the total number of iterations.

2. Upper Level - Update of the location parameters: Per-
form one transition of an MCMC technique over the cur-
rent population of location parameters,

P11 = {Hl,t—h -~-7“N,t—1}7
to obtain a new population,
7),5 = {Nl,ta ...,/,I,Nﬂg}.

3. Lower Level - Interacting IS steps:
(4)

(a) Draw z;, ~ qit(x|pig, C;) for j = 1,..., M and
1=1,...,N
(b) Compute the importance weights,
(4)
W@ — W(zi,t) ©)
1 t N ; ’
~ Zkzl Qk,t(zz(',]t)|/vbk,ta Ck)
witht=1,...,N,j=1,..., M; normalize them,
_ (j)
w§f} = —, @)
Zz 1 Zg 1 U)
and set S; = 27 12 ])

(c) Calculate the current estlmate of I,

ZZw V1), ®

update the global estimate using the following recur-
sive formula,

~ 1 ~ -
Iy = m <Ht71]t71 + StJt) ) ©)
Zy = Hyq + S,

and set H; = H;_1 + S;.
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4. Stopping rule: If ¢ < T, then set t = ¢ 4+ 1 and repeat
from Step 2. Otherwise, end.

5. Outputs: Return all the pairs {zfjt), i t)} where

(4 j

ﬁ(J ) _ w; ’Jt) B 1 wg,it)
it T N o _ = K

Dim1 Dimi Zj:1 wgft) NMT 7z,

The estimate of the desired integral is then obtained as

A 1
Ip~1= E/Xf(x)w(x)dx,

and the normalizing constant of the target pdf is given by

(10)

(1)

Ir~7 = / 7(x)dx. (12)
X

The final locations of the means, p; 7 for: = 1,..., N,
can be used to estimate the locations of the modes of 7 (x)
(e.g., to perform maximum a posteriori estimation).

4.1. Upper Level: MCMC adaptation

The simplest possibility is to apply one iteration of N parallel
MH techniques (one for each p; ;) in order to return ft; ;y1:

Fort=1,...,N:
1. Draw p' from a proposal pdf o; (ge|pe; ¢).

2. Set p; t+1 = p' with probability

L TW)ei(midr)
" (i )i (1 [ i)

o = min

Otherwise, set pt; 441 = p,; (With probability 1 — o).

Note that the proposal pdfs for the MCMC stage, ;,
could be the same as those used for the IS estimation, g; ;.
Furthermore, different schemes for parallel chains proposed
in literature [11] can also be applied. Finally, the proposal
pdf, ¢;, could also incorporate gradient information, as in the
Metropolis adjusted Langevin algorithm (MALA).

4.2. Important Remarks

PI-MALIS is an iterated importance sampler where the cloud
of location parameters is moved according to a transition of
MCMC techniques. It is important to remark that all the pro-
posal pdfs must be normalized to ensure a correct IS estima-
tion. At each iteration £, M i.i.d. samples are drawn from
each proposal. Then, PI-MAIS computes the current estimate
of the desired integral, J;, and updates recursively the global
estimates of the desired integral and the normalizing constant,
I, and Z, respectively. The importance weights and, hence,
the current estimate, jt, are obtained using the determinis-
tic mixture approach proposed in [8] for a fixed (i.e., non-
adaptive) setting, as this leads to more robust and efficient IS
estimators [7,9].
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The final estimators, fT and ZT, are iteratively obtained
through an importance sampling approach using K = NMT
total samples drawn from () = NT proposal pdfs: N ini-
tial proposals chosen by the user, and N (T — 1) proposals
updated by the algorithm. Indeed, denoting as Z(] ) the i-th
sample from the j-th proposal pdf at the ¢-th iteration and the

corresponding weights as wl(jt) in Eq. (6), the final global es-

timator I can be expressed as

. T N M
r=3 >l E), a3

) 1 T N M )
Zp = NMT;;;%?, (14)

The consistency of I and Z7p as the number of samples per
iteration (M x N') and/or the number of iterations (71") go to in-
finity is guaranteed by standard IS arguments [2, Chapter 14].
See [12] for the theoretical analysis and further comments
about PI-MALIS and other hierarchical MCMC schemes.

5. NUMERICAL SIMULATIONS

5.1. Multimodal target distribution

In order to compare the performance of the proposed scheme
with other algorithms, we first consider a bivariate multi-
modal target pdf, which is a mixture of 5 Gaussians:

5

m(x) = éZN(X;Vi,Ei), x € R?, (15)

i=1
with means vy = [-10,—10]", vo» = [0,16]", v3 =
[13,8]T, vy = [-9,7]7, vs = [14,—14]7, and covariance
matrices 31 = [2, 0.6;0.6, 1], 3o = [2, —0.4;-04, 2],

Y3 = [2, 08,08, 2], ¥y = [3, 0;0, 0.5] and X5 =
[2, —0.1;—0.1, 2]. We address the problem of computing
the mean of the target, E[X] = [1.6,1.4] T with X ~ 7(x)
(i.e., Z = 1, since the target is normalized). We compare
the performance, in terms of Mean Squared Error (MSE), in
the estimation using different sampling methodologies: (1)
standard, non-adaptive, Multiple IS (MIS) approach using
the classical IS weights; (2) the AMIS technique [4]; (3)
the original PMC scheme in [3]; (4) the proposed PI-MAIS
scheme. For all the previous techniques, we choose delib-
erately a “bad” initialization of the means (they are placed
far away from the modes of the target). Thus, we can test
the robustness of the algorithms and their adaptation ability.
More specifically, the initial locations are selected uniformly
within a square which does not contain any of the modes of
the target: p; o ~ U([—4,4] x [-4,4]) fori =1,...,N.
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We use the same isotropic covariance matrix, C;, =
oI, for all the proposals, testing different values of o €
{1,2,5,10}. For the MCMC adaptation, we use Gaus-
sian proposals ; with covariance matrices ¥ = M\?I,
and A € {5,10,70}. We configure all the algorithms to
yield always the same number of evaluations of the tar-
get: L = 2-10°. In PI-MAIS the number of evalua-
tions is L = TN(M + 1) and we have used N = 100,
T € {20,100,1000} and M = L/(TN) —1 € {99,19,1}.
In PMC we have set N = 100 and 7" = 2000, whereas in
AMIS we have tested several sets of parameters and we only
show the best and the worst results as in [7]. Table 1 shows
the Mean Squared Error (MSE) in the estimation of the mean
of the first component. All the results have been averaged
over 2000 independent experiments. PI-MAIS outperforms
the other algorithms in all cases except for o = 10, where
it outperforms PMC and the loss w.r.t. AMIS is negligible.
Table 1 also shows that PI-MAIS is more robust w.r.t. the
choice of the parameters than AMIS or PMC.

Alg, Std oc=1|0c=2|c=5|c=10
| MI1S | 41.95 [ 6451 | 2.17 | 0.015 |

T=20 [0522 [0593 [0.021 [ 0.014

A=5 [T =100 [0.121 [0.042 [0.009 | 0.014

T =1000 | 0.002 | 0.016 [0.010 | 0.027

T =20 |0.155 [0.288 [0.018 | 0.013

A=10 [T =100 [0.012 [0.053 [0.009 | 0.014

T =1000 | 0.002 | 0.002 [0.010 | 0.025

PIMAIS T =20 |5579 | 1.493 [0.038 | 0.013

A=70 T =100 [0918 [0.131 [0.015 | 0.014

T = 1000 | 0.104 | 0.014 [0.012 | 0.027

(best)  [121.21 [100.23 [0.864 [ 0.012

AMIS (worst) [123.38 [114.82 [ 16.92 | 0.013
|PMC | 114.11 [ 47.97 | 2.34 | 0.056 |

Table 1. MSE in the estimation of the mean of the target (first
component). We set N = 100 and L = 2 - 10° total number
of target evaluations for MIS, PI-MAIS, AMIS and PMC. For
AMIS, we only show the best and worst results.

5.2. Localization Problem in a Wireless Sensor Network

We consider the problem of positioning a target in a bidimen-
sional space using range measurements, which is a problem
that appears frequently in localization applications in wireless
sensor networks [13]. Namely, we consider a random vector
X = [X1, X5] T to denote the target position in the plane R2.
The position of the target is then a specific realization X = x.
The range measurements are obtained from 3 sensors located
ath; = [-10,2]7, hy = [8,8] " and hy = [-20, —18] . The
observation equations are given by

¢ — by

Yj:alog( 03

)+@j, j=1,...,3, (16)
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where ©; are i.i.d. Gaussian random variables with pdfs
N(9;;0,w?) for j € {1,2,3}. We consider a prior density
over w, p(w) = N(w;0,25)I(w > 0), where I(w > 0)
is 1 if w > 0 and O otherwise. The parameter A = a is
also unknown and we consider again a half-Gaussian prior,
A ~ p(a) = N(a;0,25)I(a > 0). Moreover, we also
apply Gaussian priors over X, p(z;) = N(z;;0,25) with
i € {1,2}. Thus, the target pdf is

m(z1, 22, a,wly) o L(y|z1, 22, a,w)p(x1)p(22)p(a)p(w),

where y € RPv is the measurement vector.

We simulate D, = 30 observations from the model
(D, /3 = 10 from each of the three sensors), fixing z; = 3,
o = 3, a = —20 and w = 5. Our goal is computing the

expected value of (X1, X5, A4,Q) ~ 7(x1,22,a,wly) via
Monte Carlo, in order to estimate the position of the target,
the parameter a and the standard deviation w of the noise in
the system. We apply the PI-MAIS and PMC schemes using
N Gaussian proposals as in the previous example. For both
algorithms, we initialize the cloud of particles to be spread
throughout the space of the variables of interest, i.e.,

pio ~N(p;0,30°Ly), i=1,..,N,

and fix the scale parameters as C; = diag(o7,,...,07,)I4
with ¢ = 1,...,N. The values of the standard deviations,
0, j, are chosen randomly for each Gaussian pdf: o;; ~
U([1,R]) with R € {5,10,30}. For the MCMC adapta-
tion, all proposals (; are again Gaussians with ¥ = \2I, and
A € {5,10,70}. The MSE of the estimators (averaged over
3000 independent runs) are provided in Table 2 for N = 100
and 7' € {20,100, 1000} in PI-MAIS. PMC has been simu-
lated using N = 100 and 7' = 2000. PI-MAIS always out-
performs PMC, showing both its robustness and flexibility.

Tij ™
Alg, U([1,5]) [U([1,10]) |U([1,30])

T=20 | 0382 0.351 0.363
A=5 [T =100 | 0073 0.074 0.071
T =1000 | 0.017 0.016 0.017
T=20 | 0570 0.594 0.561
A=10 | T =100 | 0.139 0.143 0.143
T = 1000 | 0.040 0.041 0.039
PIMAIS T=20 | 4365 4.001 4.190
A=70|T=100 | 1623 16.78 16.40
T =1000 | 3552 | 2I5.19 64.21

|PMC | 0064 | 0435 | 0153 |

Table 2. MSE in the estimation of E[(X1, X2, A, )], using
PI-MAIS and PMC, for different random choices of the scale
parameters, drawing L = 2 - 10° samples in all cases.

6. CONCLUSIONS

In this paper, we have proposed a novel hierarchical Monte
Carlo technique that combines the Markov chain Monte
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Carlo (MCMC) and importance sampling (IS) approaches:
Parallel Interacting Markov adaptive importance sampling
(PI-MAIS). Essentially, MCMC methods are run on top of
a multiple IS scheme in order to find good location param-
eters for the population of proposal pdfs, which interact for
providing a unique global IS estimator. The proposed ap-
proach outperforms other adaptive IS methods (such as PMC
or AMIS) in terms of efficiency and robustness w.r.t. the
initialization parameters.
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